Evaluate
\frac{y^{2}+75y+1875}{y+50}
Expand
\frac{y^{2}+75y+1875}{y+50}
Graph
Share
Copied to clipboard
\frac{\frac{50\times 50\left(y+75\right)}{y+25}}{50+\frac{50\left(y+75\right)}{y+25}}+y
Express 50\times \frac{50\left(y+75\right)}{y+25} as a single fraction.
\frac{\frac{50\times 50\left(y+75\right)}{y+25}}{\frac{50\left(y+25\right)}{y+25}+\frac{50\left(y+75\right)}{y+25}}+y
To add or subtract expressions, expand them to make their denominators the same. Multiply 50 times \frac{y+25}{y+25}.
\frac{\frac{50\times 50\left(y+75\right)}{y+25}}{\frac{50\left(y+25\right)+50\left(y+75\right)}{y+25}}+y
Since \frac{50\left(y+25\right)}{y+25} and \frac{50\left(y+75\right)}{y+25} have the same denominator, add them by adding their numerators.
\frac{\frac{50\times 50\left(y+75\right)}{y+25}}{\frac{50y+1250+50y+3750}{y+25}}+y
Do the multiplications in 50\left(y+25\right)+50\left(y+75\right).
\frac{\frac{50\times 50\left(y+75\right)}{y+25}}{\frac{100y+5000}{y+25}}+y
Combine like terms in 50y+1250+50y+3750.
\frac{50\times 50\left(y+75\right)\left(y+25\right)}{\left(y+25\right)\left(100y+5000\right)}+y
Divide \frac{50\times 50\left(y+75\right)}{y+25} by \frac{100y+5000}{y+25} by multiplying \frac{50\times 50\left(y+75\right)}{y+25} by the reciprocal of \frac{100y+5000}{y+25}.
\frac{50\times 50\left(y+75\right)}{100y+5000}+y
Cancel out y+25 in both numerator and denominator.
\frac{2500\left(y+75\right)}{100y+5000}+y
Multiply 50 and 50 to get 2500.
\frac{2500\left(y+75\right)}{100\left(y+50\right)}+y
Factor the expressions that are not already factored in \frac{2500\left(y+75\right)}{100y+5000}.
\frac{25\left(y+75\right)}{y+50}+y
Cancel out 100 in both numerator and denominator.
\frac{25\left(y+75\right)}{y+50}+\frac{y\left(y+50\right)}{y+50}
To add or subtract expressions, expand them to make their denominators the same. Multiply y times \frac{y+50}{y+50}.
\frac{25\left(y+75\right)+y\left(y+50\right)}{y+50}
Since \frac{25\left(y+75\right)}{y+50} and \frac{y\left(y+50\right)}{y+50} have the same denominator, add them by adding their numerators.
\frac{25y+1875+y^{2}+50y}{y+50}
Do the multiplications in 25\left(y+75\right)+y\left(y+50\right).
\frac{75y+1875+y^{2}}{y+50}
Combine like terms in 25y+1875+y^{2}+50y.
\frac{\frac{50\times 50\left(y+75\right)}{y+25}}{50+\frac{50\left(y+75\right)}{y+25}}+y
Express 50\times \frac{50\left(y+75\right)}{y+25} as a single fraction.
\frac{\frac{50\times 50\left(y+75\right)}{y+25}}{\frac{50\left(y+25\right)}{y+25}+\frac{50\left(y+75\right)}{y+25}}+y
To add or subtract expressions, expand them to make their denominators the same. Multiply 50 times \frac{y+25}{y+25}.
\frac{\frac{50\times 50\left(y+75\right)}{y+25}}{\frac{50\left(y+25\right)+50\left(y+75\right)}{y+25}}+y
Since \frac{50\left(y+25\right)}{y+25} and \frac{50\left(y+75\right)}{y+25} have the same denominator, add them by adding their numerators.
\frac{\frac{50\times 50\left(y+75\right)}{y+25}}{\frac{50y+1250+50y+3750}{y+25}}+y
Do the multiplications in 50\left(y+25\right)+50\left(y+75\right).
\frac{\frac{50\times 50\left(y+75\right)}{y+25}}{\frac{100y+5000}{y+25}}+y
Combine like terms in 50y+1250+50y+3750.
\frac{50\times 50\left(y+75\right)\left(y+25\right)}{\left(y+25\right)\left(100y+5000\right)}+y
Divide \frac{50\times 50\left(y+75\right)}{y+25} by \frac{100y+5000}{y+25} by multiplying \frac{50\times 50\left(y+75\right)}{y+25} by the reciprocal of \frac{100y+5000}{y+25}.
\frac{50\times 50\left(y+75\right)}{100y+5000}+y
Cancel out y+25 in both numerator and denominator.
\frac{2500\left(y+75\right)}{100y+5000}+y
Multiply 50 and 50 to get 2500.
\frac{2500\left(y+75\right)}{100\left(y+50\right)}+y
Factor the expressions that are not already factored in \frac{2500\left(y+75\right)}{100y+5000}.
\frac{25\left(y+75\right)}{y+50}+y
Cancel out 100 in both numerator and denominator.
\frac{25\left(y+75\right)}{y+50}+\frac{y\left(y+50\right)}{y+50}
To add or subtract expressions, expand them to make their denominators the same. Multiply y times \frac{y+50}{y+50}.
\frac{25\left(y+75\right)+y\left(y+50\right)}{y+50}
Since \frac{25\left(y+75\right)}{y+50} and \frac{y\left(y+50\right)}{y+50} have the same denominator, add them by adding their numerators.
\frac{25y+1875+y^{2}+50y}{y+50}
Do the multiplications in 25\left(y+75\right)+y\left(y+50\right).
\frac{75y+1875+y^{2}}{y+50}
Combine like terms in 25y+1875+y^{2}+50y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}