Solve for y
y<-\frac{23}{11}
Graph
Share
Copied to clipboard
-2\left(5y-1\right)<-3\times 7\left(y+1\right)
Multiply both sides of the equation by 6, the least common multiple of -3,-2. Since 6 is positive, the inequality direction remains the same.
-10y+2<-3\times 7\left(y+1\right)
Use the distributive property to multiply -2 by 5y-1.
-10y+2<-21\left(y+1\right)
Multiply -3 and 7 to get -21.
-10y+2<-21y-21
Use the distributive property to multiply -21 by y+1.
-10y+2+21y<-21
Add 21y to both sides.
11y+2<-21
Combine -10y and 21y to get 11y.
11y<-21-2
Subtract 2 from both sides.
11y<-23
Subtract 2 from -21 to get -23.
y<-\frac{23}{11}
Divide both sides by 11. Since 11 is positive, the inequality direction remains the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}