Evaluate
2y
Differentiate w.r.t. y
2
Graph
Quiz
Polynomial
5 problems similar to:
\frac { 5 y } { 2 } + \frac { y } { 6 } - \frac { 2 y } { 3 } =
Share
Copied to clipboard
\frac{3\times 5y}{6}+\frac{y}{6}-\frac{2y}{3}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 6 is 6. Multiply \frac{5y}{2} times \frac{3}{3}.
\frac{3\times 5y+y}{6}-\frac{2y}{3}
Since \frac{3\times 5y}{6} and \frac{y}{6} have the same denominator, add them by adding their numerators.
\frac{15y+y}{6}-\frac{2y}{3}
Do the multiplications in 3\times 5y+y.
\frac{16y}{6}-\frac{2y}{3}
Combine like terms in 15y+y.
\frac{16y}{6}-\frac{2\times 2y}{6}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 6 and 3 is 6. Multiply \frac{2y}{3} times \frac{2}{2}.
\frac{16y-2\times 2y}{6}
Since \frac{16y}{6} and \frac{2\times 2y}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{16y-4y}{6}
Do the multiplications in 16y-2\times 2y.
\frac{12y}{6}
Combine like terms in 16y-4y.
2y
Divide 12y by 6 to get 2y.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{3\times 5y}{6}+\frac{y}{6}-\frac{2y}{3})
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 6 is 6. Multiply \frac{5y}{2} times \frac{3}{3}.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{3\times 5y+y}{6}-\frac{2y}{3})
Since \frac{3\times 5y}{6} and \frac{y}{6} have the same denominator, add them by adding their numerators.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{15y+y}{6}-\frac{2y}{3})
Do the multiplications in 3\times 5y+y.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{16y}{6}-\frac{2y}{3})
Combine like terms in 15y+y.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{16y}{6}-\frac{2\times 2y}{6})
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 6 and 3 is 6. Multiply \frac{2y}{3} times \frac{2}{2}.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{16y-2\times 2y}{6})
Since \frac{16y}{6} and \frac{2\times 2y}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{16y-4y}{6})
Do the multiplications in 16y-2\times 2y.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{12y}{6})
Combine like terms in 16y-4y.
\frac{\mathrm{d}}{\mathrm{d}y}(2y)
Divide 12y by 6 to get 2y.
2y^{1-1}
The derivative of ax^{n} is nax^{n-1}.
2y^{0}
Subtract 1 from 1.
2\times 1
For any term t except 0, t^{0}=1.
2
For any term t, t\times 1=t and 1t=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}