Solve for x
x=\frac{4y^{2}+37y-70}{29}
y\neq -\frac{25}{4}\text{ and }y\neq -3
Solve for y (complex solution)
y=\frac{-\sqrt{464x+2489}-37}{8}
y=\frac{\sqrt{464x+2489}-37}{8}\text{, }x\neq -5
Solve for y
y=\frac{-\sqrt{464x+2489}-37}{8}
y=\frac{\sqrt{464x+2489}-37}{8}\text{, }x\neq -5\text{ and }x\geq -\frac{2489}{464}
Graph
Share
Copied to clipboard
\left(y+3\right)\left(5x-4y\right)=\left(x+5\right)\left(5y-14\right)
Variable x cannot be equal to -5 since division by zero is not defined. Multiply both sides of the equation by \left(x+5\right)\left(y+3\right), the least common multiple of x+5,y+3.
5yx-4y^{2}+15x-12y=\left(x+5\right)\left(5y-14\right)
Use the distributive property to multiply y+3 by 5x-4y.
5yx-4y^{2}+15x-12y=5xy-14x+25y-70
Use the distributive property to multiply x+5 by 5y-14.
5yx-4y^{2}+15x-12y-5xy=-14x+25y-70
Subtract 5xy from both sides.
-4y^{2}+15x-12y=-14x+25y-70
Combine 5yx and -5xy to get 0.
-4y^{2}+15x-12y+14x=25y-70
Add 14x to both sides.
-4y^{2}+29x-12y=25y-70
Combine 15x and 14x to get 29x.
29x-12y=25y-70+4y^{2}
Add 4y^{2} to both sides.
29x=25y-70+4y^{2}+12y
Add 12y to both sides.
29x=37y-70+4y^{2}
Combine 25y and 12y to get 37y.
29x=4y^{2}+37y-70
The equation is in standard form.
\frac{29x}{29}=\frac{4y^{2}+37y-70}{29}
Divide both sides by 29.
x=\frac{4y^{2}+37y-70}{29}
Dividing by 29 undoes the multiplication by 29.
x=\frac{4y^{2}+37y-70}{29}\text{, }x\neq -5
Variable x cannot be equal to -5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}