Solve for x
x=\frac{9\sqrt{2}+1}{23}\approx 0.596866177
Graph
Share
Copied to clipboard
2^{\frac{1}{2}}\left(5x-2\sqrt{2}\right)-\left(x-3\right)-\frac{1}{3}\times 2^{\frac{1}{2}}\left(11x-1\right)=0
Multiply both sides of the equation by 2.
2^{\frac{1}{2}}\times 5x+2^{\frac{1}{2}}\left(-2\right)\sqrt{2}-\left(x-3\right)-\frac{1}{3}\times 2^{\frac{1}{2}}\left(11x-1\right)=0
Use the distributive property to multiply 2^{\frac{1}{2}} by 5x-2\sqrt{2}.
2^{\frac{1}{2}}\times 5x+2^{\frac{1}{2}}\left(-2\right)\sqrt{2}-x-\left(-3\right)-\frac{1}{3}\times 2^{\frac{1}{2}}\left(11x-1\right)=0
To find the opposite of x-3, find the opposite of each term.
2^{\frac{1}{2}}\times 5x+2^{\frac{1}{2}}\left(-2\right)\sqrt{2}-x+3-\frac{1}{3}\times 2^{\frac{1}{2}}\left(11x-1\right)=0
The opposite of -3 is 3.
2^{\frac{1}{2}}\times 5x+2^{\frac{1}{2}}\left(-2\right)\sqrt{2}-x+3-\left(\frac{1}{3}\times 2^{\frac{1}{2}}\times 11x+\frac{1}{3}\times 2^{\frac{1}{2}}\left(-1\right)\right)=0
Use the distributive property to multiply \frac{1}{3}\times 2^{\frac{1}{2}} by 11x-1.
2^{\frac{1}{2}}\times 5x+2^{\frac{1}{2}}\left(-2\right)\sqrt{2}-x+3-\left(\frac{11}{3}\times 2^{\frac{1}{2}}x+\frac{1}{3}\times 2^{\frac{1}{2}}\left(-1\right)\right)=0
Multiply \frac{1}{3} and 11 to get \frac{11}{3}.
2^{\frac{1}{2}}\times 5x+2^{\frac{1}{2}}\left(-2\right)\sqrt{2}-x+3-\left(\frac{11}{3}\times 2^{\frac{1}{2}}x-\frac{1}{3}\times 2^{\frac{1}{2}}\right)=0
Multiply \frac{1}{3} and -1 to get -\frac{1}{3}.
2^{\frac{1}{2}}\times 5x+2^{\frac{1}{2}}\left(-2\right)\sqrt{2}-x+3-\frac{11}{3}\times 2^{\frac{1}{2}}x-\left(-\frac{1}{3}\times 2^{\frac{1}{2}}\right)=0
To find the opposite of \frac{11}{3}\times 2^{\frac{1}{2}}x-\frac{1}{3}\times 2^{\frac{1}{2}}, find the opposite of each term.
2^{\frac{1}{2}}\times 5x+2^{\frac{1}{2}}\left(-2\right)\sqrt{2}-x+3-\frac{11}{3}\times 2^{\frac{1}{2}}x+\frac{1}{3}\times 2^{\frac{1}{2}}=0
The opposite of -\frac{1}{3}\times 2^{\frac{1}{2}} is \frac{1}{3}\times 2^{\frac{1}{2}}.
\frac{4}{3}\times 2^{\frac{1}{2}}x+2^{\frac{1}{2}}\left(-2\right)\sqrt{2}-x+3+\frac{1}{3}\times 2^{\frac{1}{2}}=0
Combine 2^{\frac{1}{2}}\times 5x and -\frac{11}{3}\times 2^{\frac{1}{2}}x to get \frac{4}{3}\times 2^{\frac{1}{2}}x.
\frac{4}{3}\times 2^{\frac{1}{2}}x-x+3+\frac{1}{3}\times 2^{\frac{1}{2}}=-2^{\frac{1}{2}}\left(-2\right)\sqrt{2}
Subtract 2^{\frac{1}{2}}\left(-2\right)\sqrt{2} from both sides. Anything subtracted from zero gives its negation.
\frac{4}{3}\times 2^{\frac{1}{2}}x-x+\frac{1}{3}\times 2^{\frac{1}{2}}=-2^{\frac{1}{2}}\left(-2\right)\sqrt{2}-3
Subtract 3 from both sides.
\frac{4}{3}\times 2^{\frac{1}{2}}x-x=-2^{\frac{1}{2}}\left(-2\right)\sqrt{2}-3-\frac{1}{3}\times 2^{\frac{1}{2}}
Subtract \frac{1}{3}\times 2^{\frac{1}{2}} from both sides.
\frac{4}{3}\sqrt{2}x-x=-\left(-2\sqrt{2}\sqrt{2}\right)-3-\frac{1}{3}\sqrt{2}
Reorder the terms.
\frac{4}{3}\sqrt{2}x-x=-\left(-2\right)\times 2-3-\frac{1}{3}\sqrt{2}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{4}{3}\sqrt{2}x-x=2\times 2-3-\frac{1}{3}\sqrt{2}
Multiply -1 and -2 to get 2.
\frac{4}{3}\sqrt{2}x-x=4-3-\frac{1}{3}\sqrt{2}
Multiply 2 and 2 to get 4.
\frac{4}{3}\sqrt{2}x-x=1-\frac{1}{3}\sqrt{2}
Subtract 3 from 4 to get 1.
\left(\frac{4}{3}\sqrt{2}-1\right)x=1-\frac{1}{3}\sqrt{2}
Combine all terms containing x.
\left(\frac{4\sqrt{2}}{3}-1\right)x=-\frac{\sqrt{2}}{3}+1
The equation is in standard form.
\frac{\left(\frac{4\sqrt{2}}{3}-1\right)x}{\frac{4\sqrt{2}}{3}-1}=\frac{-\frac{\sqrt{2}}{3}+1}{\frac{4\sqrt{2}}{3}-1}
Divide both sides by \frac{4}{3}\sqrt{2}-1.
x=\frac{-\frac{\sqrt{2}}{3}+1}{\frac{4\sqrt{2}}{3}-1}
Dividing by \frac{4}{3}\sqrt{2}-1 undoes the multiplication by \frac{4}{3}\sqrt{2}-1.
x=\frac{9\sqrt{2}+1}{23}
Divide 1-\frac{\sqrt{2}}{3} by \frac{4}{3}\sqrt{2}-1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}