Solve for x
x\geq 0
Graph
Share
Copied to clipboard
5x-1+16x\geq 8x-\left(x+1\right)
Multiply both sides of the equation by 8. Since 8 is positive, the inequality direction remains the same.
21x-1\geq 8x-\left(x+1\right)
Combine 5x and 16x to get 21x.
21x-1\geq 8x-x-1
To find the opposite of x+1, find the opposite of each term.
21x-1\geq 7x-1
Combine 8x and -x to get 7x.
21x-1-7x\geq -1
Subtract 7x from both sides.
14x-1\geq -1
Combine 21x and -7x to get 14x.
14x\geq -1+1
Add 1 to both sides.
14x\geq 0
Add -1 and 1 to get 0.
x\geq 0
Product of two numbers is ≥0 if both are ≥0 or both are ≤0. Since 14\geq 0, x must be ≥0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}