Solve for x (complex solution)
x=\sqrt{2}-1\approx 0.414213562
x=-\left(\sqrt{2}+1\right)\approx -2.414213562
Solve for x
x=\sqrt{2}-1\approx 0.414213562
x=-\sqrt{2}-1\approx -2.414213562
Graph
Quiz
Quadratic Equation
5 problems similar to:
\frac { 5 x } { x - 3 } = \frac { 5 } { x ^ { 2 } - x - 6 }
Share
Copied to clipboard
\left(x+2\right)\times 5x=5
Variable x cannot be equal to any of the values -2,3 since division by zero is not defined. Multiply both sides of the equation by \left(x-3\right)\left(x+2\right), the least common multiple of x-3,x^{2}-x-6.
\left(5x+10\right)x=5
Use the distributive property to multiply x+2 by 5.
5x^{2}+10x=5
Use the distributive property to multiply 5x+10 by x.
5x^{2}+10x-5=0
Subtract 5 from both sides.
x=\frac{-10±\sqrt{10^{2}-4\times 5\left(-5\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 10 for b, and -5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-10±\sqrt{100-4\times 5\left(-5\right)}}{2\times 5}
Square 10.
x=\frac{-10±\sqrt{100-20\left(-5\right)}}{2\times 5}
Multiply -4 times 5.
x=\frac{-10±\sqrt{100+100}}{2\times 5}
Multiply -20 times -5.
x=\frac{-10±\sqrt{200}}{2\times 5}
Add 100 to 100.
x=\frac{-10±10\sqrt{2}}{2\times 5}
Take the square root of 200.
x=\frac{-10±10\sqrt{2}}{10}
Multiply 2 times 5.
x=\frac{10\sqrt{2}-10}{10}
Now solve the equation x=\frac{-10±10\sqrt{2}}{10} when ± is plus. Add -10 to 10\sqrt{2}.
x=\sqrt{2}-1
Divide -10+10\sqrt{2} by 10.
x=\frac{-10\sqrt{2}-10}{10}
Now solve the equation x=\frac{-10±10\sqrt{2}}{10} when ± is minus. Subtract 10\sqrt{2} from -10.
x=-\sqrt{2}-1
Divide -10-10\sqrt{2} by 10.
x=\sqrt{2}-1 x=-\sqrt{2}-1
The equation is now solved.
\left(x+2\right)\times 5x=5
Variable x cannot be equal to any of the values -2,3 since division by zero is not defined. Multiply both sides of the equation by \left(x-3\right)\left(x+2\right), the least common multiple of x-3,x^{2}-x-6.
\left(5x+10\right)x=5
Use the distributive property to multiply x+2 by 5.
5x^{2}+10x=5
Use the distributive property to multiply 5x+10 by x.
\frac{5x^{2}+10x}{5}=\frac{5}{5}
Divide both sides by 5.
x^{2}+\frac{10}{5}x=\frac{5}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}+2x=\frac{5}{5}
Divide 10 by 5.
x^{2}+2x=1
Divide 5 by 5.
x^{2}+2x+1^{2}=1+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=1+1
Square 1.
x^{2}+2x+1=2
Add 1 to 1.
\left(x+1\right)^{2}=2
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{2}
Take the square root of both sides of the equation.
x+1=\sqrt{2} x+1=-\sqrt{2}
Simplify.
x=\sqrt{2}-1 x=-\sqrt{2}-1
Subtract 1 from both sides of the equation.
\left(x+2\right)\times 5x=5
Variable x cannot be equal to any of the values -2,3 since division by zero is not defined. Multiply both sides of the equation by \left(x-3\right)\left(x+2\right), the least common multiple of x-3,x^{2}-x-6.
\left(5x+10\right)x=5
Use the distributive property to multiply x+2 by 5.
5x^{2}+10x=5
Use the distributive property to multiply 5x+10 by x.
5x^{2}+10x-5=0
Subtract 5 from both sides.
x=\frac{-10±\sqrt{10^{2}-4\times 5\left(-5\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 10 for b, and -5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-10±\sqrt{100-4\times 5\left(-5\right)}}{2\times 5}
Square 10.
x=\frac{-10±\sqrt{100-20\left(-5\right)}}{2\times 5}
Multiply -4 times 5.
x=\frac{-10±\sqrt{100+100}}{2\times 5}
Multiply -20 times -5.
x=\frac{-10±\sqrt{200}}{2\times 5}
Add 100 to 100.
x=\frac{-10±10\sqrt{2}}{2\times 5}
Take the square root of 200.
x=\frac{-10±10\sqrt{2}}{10}
Multiply 2 times 5.
x=\frac{10\sqrt{2}-10}{10}
Now solve the equation x=\frac{-10±10\sqrt{2}}{10} when ± is plus. Add -10 to 10\sqrt{2}.
x=\sqrt{2}-1
Divide -10+10\sqrt{2} by 10.
x=\frac{-10\sqrt{2}-10}{10}
Now solve the equation x=\frac{-10±10\sqrt{2}}{10} when ± is minus. Subtract 10\sqrt{2} from -10.
x=-\sqrt{2}-1
Divide -10-10\sqrt{2} by 10.
x=\sqrt{2}-1 x=-\sqrt{2}-1
The equation is now solved.
\left(x+2\right)\times 5x=5
Variable x cannot be equal to any of the values -2,3 since division by zero is not defined. Multiply both sides of the equation by \left(x-3\right)\left(x+2\right), the least common multiple of x-3,x^{2}-x-6.
\left(5x+10\right)x=5
Use the distributive property to multiply x+2 by 5.
5x^{2}+10x=5
Use the distributive property to multiply 5x+10 by x.
\frac{5x^{2}+10x}{5}=\frac{5}{5}
Divide both sides by 5.
x^{2}+\frac{10}{5}x=\frac{5}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}+2x=\frac{5}{5}
Divide 10 by 5.
x^{2}+2x=1
Divide 5 by 5.
x^{2}+2x+1^{2}=1+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=1+1
Square 1.
x^{2}+2x+1=2
Add 1 to 1.
\left(x+1\right)^{2}=2
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{2}
Take the square root of both sides of the equation.
x+1=\sqrt{2} x+1=-\sqrt{2}
Simplify.
x=\sqrt{2}-1 x=-\sqrt{2}-1
Subtract 1 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}