Solve for x (complex solution)
x=\frac{6}{5}+\frac{8}{5}i=1.2+1.6i
x=\frac{6}{5}-\frac{8}{5}i=1.2-1.6i
Graph
Share
Copied to clipboard
5x^{2}-6x=6x-20
Multiply both sides of the equation by 2.
5x^{2}-6x-6x=-20
Subtract 6x from both sides.
5x^{2}-12x=-20
Combine -6x and -6x to get -12x.
5x^{2}-12x+20=0
Add 20 to both sides.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 5\times 20}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, -12 for b, and 20 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 5\times 20}}{2\times 5}
Square -12.
x=\frac{-\left(-12\right)±\sqrt{144-20\times 20}}{2\times 5}
Multiply -4 times 5.
x=\frac{-\left(-12\right)±\sqrt{144-400}}{2\times 5}
Multiply -20 times 20.
x=\frac{-\left(-12\right)±\sqrt{-256}}{2\times 5}
Add 144 to -400.
x=\frac{-\left(-12\right)±16i}{2\times 5}
Take the square root of -256.
x=\frac{12±16i}{2\times 5}
The opposite of -12 is 12.
x=\frac{12±16i}{10}
Multiply 2 times 5.
x=\frac{12+16i}{10}
Now solve the equation x=\frac{12±16i}{10} when ± is plus. Add 12 to 16i.
x=\frac{6}{5}+\frac{8}{5}i
Divide 12+16i by 10.
x=\frac{12-16i}{10}
Now solve the equation x=\frac{12±16i}{10} when ± is minus. Subtract 16i from 12.
x=\frac{6}{5}-\frac{8}{5}i
Divide 12-16i by 10.
x=\frac{6}{5}+\frac{8}{5}i x=\frac{6}{5}-\frac{8}{5}i
The equation is now solved.
5x^{2}-6x=6x-20
Multiply both sides of the equation by 2.
5x^{2}-6x-6x=-20
Subtract 6x from both sides.
5x^{2}-12x=-20
Combine -6x and -6x to get -12x.
\frac{5x^{2}-12x}{5}=-\frac{20}{5}
Divide both sides by 5.
x^{2}-\frac{12}{5}x=-\frac{20}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}-\frac{12}{5}x=-4
Divide -20 by 5.
x^{2}-\frac{12}{5}x+\left(-\frac{6}{5}\right)^{2}=-4+\left(-\frac{6}{5}\right)^{2}
Divide -\frac{12}{5}, the coefficient of the x term, by 2 to get -\frac{6}{5}. Then add the square of -\frac{6}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{12}{5}x+\frac{36}{25}=-4+\frac{36}{25}
Square -\frac{6}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{12}{5}x+\frac{36}{25}=-\frac{64}{25}
Add -4 to \frac{36}{25}.
\left(x-\frac{6}{5}\right)^{2}=-\frac{64}{25}
Factor x^{2}-\frac{12}{5}x+\frac{36}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{6}{5}\right)^{2}}=\sqrt{-\frac{64}{25}}
Take the square root of both sides of the equation.
x-\frac{6}{5}=\frac{8}{5}i x-\frac{6}{5}=-\frac{8}{5}i
Simplify.
x=\frac{6}{5}+\frac{8}{5}i x=\frac{6}{5}-\frac{8}{5}i
Add \frac{6}{5} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}