Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

5x^{2}=\frac{2}{5}\times 8
Multiply both sides by 8.
5x^{2}=\frac{16}{5}
Multiply \frac{2}{5} and 8 to get \frac{16}{5}.
5x^{2}-\frac{16}{5}=0
Subtract \frac{16}{5} from both sides.
25x^{2}-16=0
Multiply both sides by 5.
\left(5x-4\right)\left(5x+4\right)=0
Consider 25x^{2}-16. Rewrite 25x^{2}-16 as \left(5x\right)^{2}-4^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=\frac{4}{5} x=-\frac{4}{5}
To find equation solutions, solve 5x-4=0 and 5x+4=0.
5x^{2}=\frac{2}{5}\times 8
Multiply both sides by 8.
5x^{2}=\frac{16}{5}
Multiply \frac{2}{5} and 8 to get \frac{16}{5}.
x^{2}=\frac{\frac{16}{5}}{5}
Divide both sides by 5.
x^{2}=\frac{16}{5\times 5}
Express \frac{\frac{16}{5}}{5} as a single fraction.
x^{2}=\frac{16}{25}
Multiply 5 and 5 to get 25.
x=\frac{4}{5} x=-\frac{4}{5}
Take the square root of both sides of the equation.
5x^{2}=\frac{2}{5}\times 8
Multiply both sides by 8.
5x^{2}=\frac{16}{5}
Multiply \frac{2}{5} and 8 to get \frac{16}{5}.
5x^{2}-\frac{16}{5}=0
Subtract \frac{16}{5} from both sides.
x=\frac{0±\sqrt{0^{2}-4\times 5\left(-\frac{16}{5}\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 0 for b, and -\frac{16}{5} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 5\left(-\frac{16}{5}\right)}}{2\times 5}
Square 0.
x=\frac{0±\sqrt{-20\left(-\frac{16}{5}\right)}}{2\times 5}
Multiply -4 times 5.
x=\frac{0±\sqrt{64}}{2\times 5}
Multiply -20 times -\frac{16}{5}.
x=\frac{0±8}{2\times 5}
Take the square root of 64.
x=\frac{0±8}{10}
Multiply 2 times 5.
x=\frac{4}{5}
Now solve the equation x=\frac{0±8}{10} when ± is plus. Reduce the fraction \frac{8}{10} to lowest terms by extracting and canceling out 2.
x=-\frac{4}{5}
Now solve the equation x=\frac{0±8}{10} when ± is minus. Reduce the fraction \frac{-8}{10} to lowest terms by extracting and canceling out 2.
x=\frac{4}{5} x=-\frac{4}{5}
The equation is now solved.