Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{5x+6}{x^{2}-4}-\frac{x\left(x-2\right)}{\left(x^{2}-4\right)x}-\frac{x+2}{x-2}
Divide \frac{x}{x^{2}-4} by \frac{x}{x-2} by multiplying \frac{x}{x^{2}-4} by the reciprocal of \frac{x}{x-2}.
\frac{5x+6}{x^{2}-4}-\frac{x-2}{x^{2}-4}-\frac{x+2}{x-2}
Cancel out x in both numerator and denominator.
\frac{5x+6}{x^{2}-4}-\frac{x-2}{\left(x-2\right)\left(x+2\right)}-\frac{x+2}{x-2}
Factor the expressions that are not already factored in \frac{x-2}{x^{2}-4}.
\frac{5x+6}{x^{2}-4}-\frac{1}{x+2}-\frac{x+2}{x-2}
Cancel out x-2 in both numerator and denominator.
\frac{5x+6}{\left(x-2\right)\left(x+2\right)}-\frac{1}{x+2}-\frac{x+2}{x-2}
Factor x^{2}-4.
\frac{5x+6}{\left(x-2\right)\left(x+2\right)}-\frac{x-2}{\left(x-2\right)\left(x+2\right)}-\frac{x+2}{x-2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-2\right)\left(x+2\right) and x+2 is \left(x-2\right)\left(x+2\right). Multiply \frac{1}{x+2} times \frac{x-2}{x-2}.
\frac{5x+6-\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{x+2}{x-2}
Since \frac{5x+6}{\left(x-2\right)\left(x+2\right)} and \frac{x-2}{\left(x-2\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{5x+6-x+2}{\left(x-2\right)\left(x+2\right)}-\frac{x+2}{x-2}
Do the multiplications in 5x+6-\left(x-2\right).
\frac{4x+8}{\left(x-2\right)\left(x+2\right)}-\frac{x+2}{x-2}
Combine like terms in 5x+6-x+2.
\frac{4\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{x+2}{x-2}
Factor the expressions that are not already factored in \frac{4x+8}{\left(x-2\right)\left(x+2\right)}.
\frac{4}{x-2}-\frac{x+2}{x-2}
Cancel out x+2 in both numerator and denominator.
\frac{4-\left(x+2\right)}{x-2}
Since \frac{4}{x-2} and \frac{x+2}{x-2} have the same denominator, subtract them by subtracting their numerators.
\frac{4-x-2}{x-2}
Do the multiplications in 4-\left(x+2\right).
\frac{2-x}{x-2}
Combine like terms in 4-x-2.
\frac{-\left(x-2\right)}{x-2}
Extract the negative sign in 2-x.
-1
Cancel out x-2 in both numerator and denominator.