Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{5v-1}{\left(v-9\right)\left(v+4\right)}-\frac{v-10}{\left(v-4\right)\left(v+4\right)}
Factor v^{2}-5v-36. Factor v^{2}-16.
\frac{\left(5v-1\right)\left(v-4\right)}{\left(v-9\right)\left(v-4\right)\left(v+4\right)}-\frac{\left(v-10\right)\left(v-9\right)}{\left(v-9\right)\left(v-4\right)\left(v+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(v-9\right)\left(v+4\right) and \left(v-4\right)\left(v+4\right) is \left(v-9\right)\left(v-4\right)\left(v+4\right). Multiply \frac{5v-1}{\left(v-9\right)\left(v+4\right)} times \frac{v-4}{v-4}. Multiply \frac{v-10}{\left(v-4\right)\left(v+4\right)} times \frac{v-9}{v-9}.
\frac{\left(5v-1\right)\left(v-4\right)-\left(v-10\right)\left(v-9\right)}{\left(v-9\right)\left(v-4\right)\left(v+4\right)}
Since \frac{\left(5v-1\right)\left(v-4\right)}{\left(v-9\right)\left(v-4\right)\left(v+4\right)} and \frac{\left(v-10\right)\left(v-9\right)}{\left(v-9\right)\left(v-4\right)\left(v+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{5v^{2}-20v-v+4-v^{2}+9v+10v-90}{\left(v-9\right)\left(v-4\right)\left(v+4\right)}
Do the multiplications in \left(5v-1\right)\left(v-4\right)-\left(v-10\right)\left(v-9\right).
\frac{4v^{2}-2v-86}{\left(v-9\right)\left(v-4\right)\left(v+4\right)}
Combine like terms in 5v^{2}-20v-v+4-v^{2}+9v+10v-90.
\frac{4v^{2}-2v-86}{v^{3}-9v^{2}-16v+144}
Expand \left(v-9\right)\left(v-4\right)\left(v+4\right).
\frac{5v-1}{\left(v-9\right)\left(v+4\right)}-\frac{v-10}{\left(v-4\right)\left(v+4\right)}
Factor v^{2}-5v-36. Factor v^{2}-16.
\frac{\left(5v-1\right)\left(v-4\right)}{\left(v-9\right)\left(v-4\right)\left(v+4\right)}-\frac{\left(v-10\right)\left(v-9\right)}{\left(v-9\right)\left(v-4\right)\left(v+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(v-9\right)\left(v+4\right) and \left(v-4\right)\left(v+4\right) is \left(v-9\right)\left(v-4\right)\left(v+4\right). Multiply \frac{5v-1}{\left(v-9\right)\left(v+4\right)} times \frac{v-4}{v-4}. Multiply \frac{v-10}{\left(v-4\right)\left(v+4\right)} times \frac{v-9}{v-9}.
\frac{\left(5v-1\right)\left(v-4\right)-\left(v-10\right)\left(v-9\right)}{\left(v-9\right)\left(v-4\right)\left(v+4\right)}
Since \frac{\left(5v-1\right)\left(v-4\right)}{\left(v-9\right)\left(v-4\right)\left(v+4\right)} and \frac{\left(v-10\right)\left(v-9\right)}{\left(v-9\right)\left(v-4\right)\left(v+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{5v^{2}-20v-v+4-v^{2}+9v+10v-90}{\left(v-9\right)\left(v-4\right)\left(v+4\right)}
Do the multiplications in \left(5v-1\right)\left(v-4\right)-\left(v-10\right)\left(v-9\right).
\frac{4v^{2}-2v-86}{\left(v-9\right)\left(v-4\right)\left(v+4\right)}
Combine like terms in 5v^{2}-20v-v+4-v^{2}+9v+10v-90.
\frac{4v^{2}-2v-86}{v^{3}-9v^{2}-16v+144}
Expand \left(v-9\right)\left(v-4\right)\left(v+4\right).