Solve for n (complex solution)
n=\frac{x\left(x+5\right)}{3x^{2}-x+2}
x\neq \frac{1+\sqrt{23}i}{6}\text{ and }x\neq \frac{-\sqrt{23}i+1}{6}\text{ and }x\neq -1\text{ and }x\neq 1
Solve for n
n=\frac{x\left(x+5\right)}{3x^{2}-x+2}
|x|\neq 1
Solve for x (complex solution)
\left\{\begin{matrix}x=\frac{-\sqrt{25+18n-23n^{2}}+n+5}{2\left(3n-1\right)}\text{, }&n\neq \frac{1}{3}\\x=\frac{\sqrt{25+18n-23n^{2}}+n+5}{2\left(3n-1\right)}\text{, }&n\neq -\frac{2}{3}\text{ and }n\neq \frac{1}{3}\text{ and }n\neq \frac{3}{2}\\x=\frac{1}{8}\text{, }&n=\frac{1}{3}\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=\frac{-\sqrt{25+18n-23n^{2}}+n+5}{2\left(3n-1\right)}\text{, }&n\neq \frac{1}{3}\text{ and }n\geq \frac{9-4\sqrt{41}}{23}\text{ and }n\leq \frac{4\sqrt{41}+9}{23}\\x=\frac{\sqrt{25+18n-23n^{2}}+n+5}{2\left(3n-1\right)}\text{, }&n\neq \frac{3}{2}\text{ and }n\neq \frac{1}{3}\text{ and }n\geq \frac{9-4\sqrt{41}}{23}\text{ and }n\leq \frac{4\sqrt{41}+9}{23}\text{ and }n\neq -\frac{2}{3}\\x=\frac{1}{8}\text{, }&n=\frac{1}{3}\end{matrix}\right.
Graph
Share
Copied to clipboard
5nx^{2}-5x-nx-1=2n\left(x-1\right)\left(x+1\right)+\left(x-1\right)\left(x+1\right)
Multiply both sides of the equation by \left(x-1\right)\left(x+1\right).
5nx^{2}-5x-nx-1=\left(2nx-2n\right)\left(x+1\right)+\left(x-1\right)\left(x+1\right)
Use the distributive property to multiply 2n by x-1.
5nx^{2}-5x-nx-1=2nx^{2}-2n+\left(x-1\right)\left(x+1\right)
Use the distributive property to multiply 2nx-2n by x+1 and combine like terms.
5nx^{2}-5x-nx-1=2nx^{2}-2n+x^{2}-1
Consider \left(x-1\right)\left(x+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
5nx^{2}-5x-nx-1-2nx^{2}=-2n+x^{2}-1
Subtract 2nx^{2} from both sides.
3nx^{2}-5x-nx-1=-2n+x^{2}-1
Combine 5nx^{2} and -2nx^{2} to get 3nx^{2}.
3nx^{2}-5x-nx-1+2n=x^{2}-1
Add 2n to both sides.
3nx^{2}-nx-1+2n=x^{2}-1+5x
Add 5x to both sides.
3nx^{2}-nx+2n=x^{2}-1+5x+1
Add 1 to both sides.
3nx^{2}-nx+2n=x^{2}+5x
Add -1 and 1 to get 0.
\left(3x^{2}-x+2\right)n=x^{2}+5x
Combine all terms containing n.
\frac{\left(3x^{2}-x+2\right)n}{3x^{2}-x+2}=\frac{x\left(x+5\right)}{3x^{2}-x+2}
Divide both sides by 3x^{2}-x+2.
n=\frac{x\left(x+5\right)}{3x^{2}-x+2}
Dividing by 3x^{2}-x+2 undoes the multiplication by 3x^{2}-x+2.
5nx^{2}-5x-nx-1=2n\left(x-1\right)\left(x+1\right)+\left(x-1\right)\left(x+1\right)
Multiply both sides of the equation by \left(x-1\right)\left(x+1\right).
5nx^{2}-5x-nx-1=\left(2nx-2n\right)\left(x+1\right)+\left(x-1\right)\left(x+1\right)
Use the distributive property to multiply 2n by x-1.
5nx^{2}-5x-nx-1=2nx^{2}-2n+\left(x-1\right)\left(x+1\right)
Use the distributive property to multiply 2nx-2n by x+1 and combine like terms.
5nx^{2}-5x-nx-1=2nx^{2}-2n+x^{2}-1
Consider \left(x-1\right)\left(x+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
5nx^{2}-5x-nx-1-2nx^{2}=-2n+x^{2}-1
Subtract 2nx^{2} from both sides.
3nx^{2}-5x-nx-1=-2n+x^{2}-1
Combine 5nx^{2} and -2nx^{2} to get 3nx^{2}.
3nx^{2}-5x-nx-1+2n=x^{2}-1
Add 2n to both sides.
3nx^{2}-nx-1+2n=x^{2}-1+5x
Add 5x to both sides.
3nx^{2}-nx+2n=x^{2}-1+5x+1
Add 1 to both sides.
3nx^{2}-nx+2n=x^{2}+5x
Add -1 and 1 to get 0.
\left(3x^{2}-x+2\right)n=x^{2}+5x
Combine all terms containing n.
\frac{\left(3x^{2}-x+2\right)n}{3x^{2}-x+2}=\frac{x\left(x+5\right)}{3x^{2}-x+2}
Divide both sides by 3x^{2}-x+2.
n=\frac{x\left(x+5\right)}{3x^{2}-x+2}
Dividing by 3x^{2}-x+2 undoes the multiplication by 3x^{2}-x+2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}