Skip to main content
Solve for n (complex solution)
Tick mark Image
Solve for n
Tick mark Image
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

5nx^{2}-5x-nx-1=2n\left(x-1\right)\left(x+1\right)+\left(x-1\right)\left(x+1\right)
Multiply both sides of the equation by \left(x-1\right)\left(x+1\right).
5nx^{2}-5x-nx-1=\left(2nx-2n\right)\left(x+1\right)+\left(x-1\right)\left(x+1\right)
Use the distributive property to multiply 2n by x-1.
5nx^{2}-5x-nx-1=2nx^{2}-2n+\left(x-1\right)\left(x+1\right)
Use the distributive property to multiply 2nx-2n by x+1 and combine like terms.
5nx^{2}-5x-nx-1=2nx^{2}-2n+x^{2}-1
Consider \left(x-1\right)\left(x+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
5nx^{2}-5x-nx-1-2nx^{2}=-2n+x^{2}-1
Subtract 2nx^{2} from both sides.
3nx^{2}-5x-nx-1=-2n+x^{2}-1
Combine 5nx^{2} and -2nx^{2} to get 3nx^{2}.
3nx^{2}-5x-nx-1+2n=x^{2}-1
Add 2n to both sides.
3nx^{2}-nx-1+2n=x^{2}-1+5x
Add 5x to both sides.
3nx^{2}-nx+2n=x^{2}-1+5x+1
Add 1 to both sides.
3nx^{2}-nx+2n=x^{2}+5x
Add -1 and 1 to get 0.
\left(3x^{2}-x+2\right)n=x^{2}+5x
Combine all terms containing n.
\frac{\left(3x^{2}-x+2\right)n}{3x^{2}-x+2}=\frac{x\left(x+5\right)}{3x^{2}-x+2}
Divide both sides by 3x^{2}-x+2.
n=\frac{x\left(x+5\right)}{3x^{2}-x+2}
Dividing by 3x^{2}-x+2 undoes the multiplication by 3x^{2}-x+2.
5nx^{2}-5x-nx-1=2n\left(x-1\right)\left(x+1\right)+\left(x-1\right)\left(x+1\right)
Multiply both sides of the equation by \left(x-1\right)\left(x+1\right).
5nx^{2}-5x-nx-1=\left(2nx-2n\right)\left(x+1\right)+\left(x-1\right)\left(x+1\right)
Use the distributive property to multiply 2n by x-1.
5nx^{2}-5x-nx-1=2nx^{2}-2n+\left(x-1\right)\left(x+1\right)
Use the distributive property to multiply 2nx-2n by x+1 and combine like terms.
5nx^{2}-5x-nx-1=2nx^{2}-2n+x^{2}-1
Consider \left(x-1\right)\left(x+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
5nx^{2}-5x-nx-1-2nx^{2}=-2n+x^{2}-1
Subtract 2nx^{2} from both sides.
3nx^{2}-5x-nx-1=-2n+x^{2}-1
Combine 5nx^{2} and -2nx^{2} to get 3nx^{2}.
3nx^{2}-5x-nx-1+2n=x^{2}-1
Add 2n to both sides.
3nx^{2}-nx-1+2n=x^{2}-1+5x
Add 5x to both sides.
3nx^{2}-nx+2n=x^{2}-1+5x+1
Add 1 to both sides.
3nx^{2}-nx+2n=x^{2}+5x
Add -1 and 1 to get 0.
\left(3x^{2}-x+2\right)n=x^{2}+5x
Combine all terms containing n.
\frac{\left(3x^{2}-x+2\right)n}{3x^{2}-x+2}=\frac{x\left(x+5\right)}{3x^{2}-x+2}
Divide both sides by 3x^{2}-x+2.
n=\frac{x\left(x+5\right)}{3x^{2}-x+2}
Dividing by 3x^{2}-x+2 undoes the multiplication by 3x^{2}-x+2.