Evaluate
\frac{5}{4}-\frac{1}{4m}+\frac{1}{m^{2}}+\frac{1}{2m^{3}}
Expand
\frac{5}{4}-\frac{1}{4m}+\frac{1}{m^{2}}+\frac{1}{2m^{3}}
Share
Copied to clipboard
\frac{\left(5m+7\right)\times 3m}{12m^{2}}-\frac{4\left(6m-2\right)}{12m^{2}}+\frac{2m+3}{6m^{3}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4m and 3m^{2} is 12m^{2}. Multiply \frac{5m+7}{4m} times \frac{3m}{3m}. Multiply \frac{6m-2}{3m^{2}} times \frac{4}{4}.
\frac{\left(5m+7\right)\times 3m-4\left(6m-2\right)}{12m^{2}}+\frac{2m+3}{6m^{3}}
Since \frac{\left(5m+7\right)\times 3m}{12m^{2}} and \frac{4\left(6m-2\right)}{12m^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{15m^{2}+21m-24m+8}{12m^{2}}+\frac{2m+3}{6m^{3}}
Do the multiplications in \left(5m+7\right)\times 3m-4\left(6m-2\right).
\frac{15m^{2}-3m+8}{12m^{2}}+\frac{2m+3}{6m^{3}}
Combine like terms in 15m^{2}+21m-24m+8.
\frac{\left(15m^{2}-3m+8\right)m}{12m^{3}}+\frac{2\left(2m+3\right)}{12m^{3}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 12m^{2} and 6m^{3} is 12m^{3}. Multiply \frac{15m^{2}-3m+8}{12m^{2}} times \frac{m}{m}. Multiply \frac{2m+3}{6m^{3}} times \frac{2}{2}.
\frac{\left(15m^{2}-3m+8\right)m+2\left(2m+3\right)}{12m^{3}}
Since \frac{\left(15m^{2}-3m+8\right)m}{12m^{3}} and \frac{2\left(2m+3\right)}{12m^{3}} have the same denominator, add them by adding their numerators.
\frac{15m^{3}-3m^{2}+8m+4m+6}{12m^{3}}
Do the multiplications in \left(15m^{2}-3m+8\right)m+2\left(2m+3\right).
\frac{15m^{3}-3m^{2}+12m+6}{12m^{3}}
Combine like terms in 15m^{3}-3m^{2}+8m+4m+6.
\frac{3\left(5m^{3}-m^{2}+4m+2\right)}{12m^{3}}
Factor the expressions that are not already factored in \frac{15m^{3}-3m^{2}+12m+6}{12m^{3}}.
\frac{5m^{3}-m^{2}+4m+2}{4m^{3}}
Cancel out 3 in both numerator and denominator.
\frac{\left(5m+7\right)\times 3m}{12m^{2}}-\frac{4\left(6m-2\right)}{12m^{2}}+\frac{2m+3}{6m^{3}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4m and 3m^{2} is 12m^{2}. Multiply \frac{5m+7}{4m} times \frac{3m}{3m}. Multiply \frac{6m-2}{3m^{2}} times \frac{4}{4}.
\frac{\left(5m+7\right)\times 3m-4\left(6m-2\right)}{12m^{2}}+\frac{2m+3}{6m^{3}}
Since \frac{\left(5m+7\right)\times 3m}{12m^{2}} and \frac{4\left(6m-2\right)}{12m^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{15m^{2}+21m-24m+8}{12m^{2}}+\frac{2m+3}{6m^{3}}
Do the multiplications in \left(5m+7\right)\times 3m-4\left(6m-2\right).
\frac{15m^{2}-3m+8}{12m^{2}}+\frac{2m+3}{6m^{3}}
Combine like terms in 15m^{2}+21m-24m+8.
\frac{\left(15m^{2}-3m+8\right)m}{12m^{3}}+\frac{2\left(2m+3\right)}{12m^{3}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 12m^{2} and 6m^{3} is 12m^{3}. Multiply \frac{15m^{2}-3m+8}{12m^{2}} times \frac{m}{m}. Multiply \frac{2m+3}{6m^{3}} times \frac{2}{2}.
\frac{\left(15m^{2}-3m+8\right)m+2\left(2m+3\right)}{12m^{3}}
Since \frac{\left(15m^{2}-3m+8\right)m}{12m^{3}} and \frac{2\left(2m+3\right)}{12m^{3}} have the same denominator, add them by adding their numerators.
\frac{15m^{3}-3m^{2}+8m+4m+6}{12m^{3}}
Do the multiplications in \left(15m^{2}-3m+8\right)m+2\left(2m+3\right).
\frac{15m^{3}-3m^{2}+12m+6}{12m^{3}}
Combine like terms in 15m^{3}-3m^{2}+8m+4m+6.
\frac{3\left(5m^{3}-m^{2}+4m+2\right)}{12m^{3}}
Factor the expressions that are not already factored in \frac{15m^{3}-3m^{2}+12m+6}{12m^{3}}.
\frac{5m^{3}-m^{2}+4m+2}{4m^{3}}
Cancel out 3 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}