Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{5i\left(1+2i\right)}{\left(1-2i\right)\left(1+2i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 1+2i.
\frac{5i\left(1+2i\right)}{1^{2}-2^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{5i\left(1+2i\right)}{5}
By definition, i^{2} is -1. Calculate the denominator.
\frac{5i\times 1+5\times 2i^{2}}{5}
Multiply 5i times 1+2i.
\frac{5i\times 1+5\times 2\left(-1\right)}{5}
By definition, i^{2} is -1.
\frac{-10+5i}{5}
Do the multiplications in 5i\times 1+5\times 2\left(-1\right). Reorder the terms.
-2+i
Divide -10+5i by 5 to get -2+i.
Re(\frac{5i\left(1+2i\right)}{\left(1-2i\right)\left(1+2i\right)})
Multiply both numerator and denominator of \frac{5i}{1-2i} by the complex conjugate of the denominator, 1+2i.
Re(\frac{5i\left(1+2i\right)}{1^{2}-2^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{5i\left(1+2i\right)}{5})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{5i\times 1+5\times 2i^{2}}{5})
Multiply 5i times 1+2i.
Re(\frac{5i\times 1+5\times 2\left(-1\right)}{5})
By definition, i^{2} is -1.
Re(\frac{-10+5i}{5})
Do the multiplications in 5i\times 1+5\times 2\left(-1\right). Reorder the terms.
Re(-2+i)
Divide -10+5i by 5 to get -2+i.
-2
The real part of -2+i is -2.