Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{5b}{b-3}-\frac{\left(b+6\right)\times 90}{\left(2b-6\right)\left(b^{2}+6b\right)}
Multiply \frac{b+6}{2b-6} times \frac{90}{b^{2}+6b} by multiplying numerator times numerator and denominator times denominator.
\frac{5b}{b-3}-\frac{90\left(b+6\right)}{2b\left(b-3\right)\left(b+6\right)}
Factor the expressions that are not already factored in \frac{\left(b+6\right)\times 90}{\left(2b-6\right)\left(b^{2}+6b\right)}.
\frac{5b}{b-3}-\frac{45}{b\left(b-3\right)}
Cancel out 2\left(b+6\right) in both numerator and denominator.
\frac{5bb}{b\left(b-3\right)}-\frac{45}{b\left(b-3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of b-3 and b\left(b-3\right) is b\left(b-3\right). Multiply \frac{5b}{b-3} times \frac{b}{b}.
\frac{5bb-45}{b\left(b-3\right)}
Since \frac{5bb}{b\left(b-3\right)} and \frac{45}{b\left(b-3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{5b^{2}-45}{b\left(b-3\right)}
Do the multiplications in 5bb-45.
\frac{5\left(b-3\right)\left(b+3\right)}{b\left(b-3\right)}
Factor the expressions that are not already factored in \frac{5b^{2}-45}{b\left(b-3\right)}.
\frac{5\left(b+3\right)}{b}
Cancel out b-3 in both numerator and denominator.
\frac{5b+15}{b}
Use the distributive property to multiply 5 by b+3.
\frac{5b}{b-3}-\frac{\left(b+6\right)\times 90}{\left(2b-6\right)\left(b^{2}+6b\right)}
Multiply \frac{b+6}{2b-6} times \frac{90}{b^{2}+6b} by multiplying numerator times numerator and denominator times denominator.
\frac{5b}{b-3}-\frac{90\left(b+6\right)}{2b\left(b-3\right)\left(b+6\right)}
Factor the expressions that are not already factored in \frac{\left(b+6\right)\times 90}{\left(2b-6\right)\left(b^{2}+6b\right)}.
\frac{5b}{b-3}-\frac{45}{b\left(b-3\right)}
Cancel out 2\left(b+6\right) in both numerator and denominator.
\frac{5bb}{b\left(b-3\right)}-\frac{45}{b\left(b-3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of b-3 and b\left(b-3\right) is b\left(b-3\right). Multiply \frac{5b}{b-3} times \frac{b}{b}.
\frac{5bb-45}{b\left(b-3\right)}
Since \frac{5bb}{b\left(b-3\right)} and \frac{45}{b\left(b-3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{5b^{2}-45}{b\left(b-3\right)}
Do the multiplications in 5bb-45.
\frac{5\left(b-3\right)\left(b+3\right)}{b\left(b-3\right)}
Factor the expressions that are not already factored in \frac{5b^{2}-45}{b\left(b-3\right)}.
\frac{5\left(b+3\right)}{b}
Cancel out b-3 in both numerator and denominator.
\frac{5b+15}{b}
Use the distributive property to multiply 5 by b+3.