Evaluate
5+\frac{15}{b}
Expand
5+\frac{15}{b}
Share
Copied to clipboard
\frac{5b}{b-3}-\frac{\left(b+6\right)\times 90}{\left(2b-6\right)\left(b^{2}+6b\right)}
Multiply \frac{b+6}{2b-6} times \frac{90}{b^{2}+6b} by multiplying numerator times numerator and denominator times denominator.
\frac{5b}{b-3}-\frac{90\left(b+6\right)}{2b\left(b-3\right)\left(b+6\right)}
Factor the expressions that are not already factored in \frac{\left(b+6\right)\times 90}{\left(2b-6\right)\left(b^{2}+6b\right)}.
\frac{5b}{b-3}-\frac{45}{b\left(b-3\right)}
Cancel out 2\left(b+6\right) in both numerator and denominator.
\frac{5bb}{b\left(b-3\right)}-\frac{45}{b\left(b-3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of b-3 and b\left(b-3\right) is b\left(b-3\right). Multiply \frac{5b}{b-3} times \frac{b}{b}.
\frac{5bb-45}{b\left(b-3\right)}
Since \frac{5bb}{b\left(b-3\right)} and \frac{45}{b\left(b-3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{5b^{2}-45}{b\left(b-3\right)}
Do the multiplications in 5bb-45.
\frac{5\left(b-3\right)\left(b+3\right)}{b\left(b-3\right)}
Factor the expressions that are not already factored in \frac{5b^{2}-45}{b\left(b-3\right)}.
\frac{5\left(b+3\right)}{b}
Cancel out b-3 in both numerator and denominator.
\frac{5b+15}{b}
Use the distributive property to multiply 5 by b+3.
\frac{5b}{b-3}-\frac{\left(b+6\right)\times 90}{\left(2b-6\right)\left(b^{2}+6b\right)}
Multiply \frac{b+6}{2b-6} times \frac{90}{b^{2}+6b} by multiplying numerator times numerator and denominator times denominator.
\frac{5b}{b-3}-\frac{90\left(b+6\right)}{2b\left(b-3\right)\left(b+6\right)}
Factor the expressions that are not already factored in \frac{\left(b+6\right)\times 90}{\left(2b-6\right)\left(b^{2}+6b\right)}.
\frac{5b}{b-3}-\frac{45}{b\left(b-3\right)}
Cancel out 2\left(b+6\right) in both numerator and denominator.
\frac{5bb}{b\left(b-3\right)}-\frac{45}{b\left(b-3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of b-3 and b\left(b-3\right) is b\left(b-3\right). Multiply \frac{5b}{b-3} times \frac{b}{b}.
\frac{5bb-45}{b\left(b-3\right)}
Since \frac{5bb}{b\left(b-3\right)} and \frac{45}{b\left(b-3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{5b^{2}-45}{b\left(b-3\right)}
Do the multiplications in 5bb-45.
\frac{5\left(b-3\right)\left(b+3\right)}{b\left(b-3\right)}
Factor the expressions that are not already factored in \frac{5b^{2}-45}{b\left(b-3\right)}.
\frac{5\left(b+3\right)}{b}
Cancel out b-3 in both numerator and denominator.
\frac{5b+15}{b}
Use the distributive property to multiply 5 by b+3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}