Solve for x
x\leq \frac{21}{4}
Graph
Share
Copied to clipboard
6\left(5-x\right)-3\left(x-17\right)\geq 7x-3
Multiply both sides of the equation by 12, the least common multiple of 2,4,12. Since 12 is positive, the inequality direction remains the same.
30-6x-3\left(x-17\right)\geq 7x-3
Use the distributive property to multiply 6 by 5-x.
30-6x-3x+51\geq 7x-3
Use the distributive property to multiply -3 by x-17.
30-9x+51\geq 7x-3
Combine -6x and -3x to get -9x.
81-9x\geq 7x-3
Add 30 and 51 to get 81.
81-9x-7x\geq -3
Subtract 7x from both sides.
81-16x\geq -3
Combine -9x and -7x to get -16x.
-16x\geq -3-81
Subtract 81 from both sides.
-16x\geq -84
Subtract 81 from -3 to get -84.
x\leq \frac{-84}{-16}
Divide both sides by -16. Since -16 is negative, the inequality direction is changed.
x\leq \frac{21}{4}
Reduce the fraction \frac{-84}{-16} to lowest terms by extracting and canceling out -4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}