Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(5-3i\right)\left(6-5i\right)}{\left(6+5i\right)\left(6-5i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 6-5i.
\frac{\left(5-3i\right)\left(6-5i\right)}{6^{2}-5^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(5-3i\right)\left(6-5i\right)}{61}
By definition, i^{2} is -1. Calculate the denominator.
\frac{5\times 6+5\times \left(-5i\right)-3i\times 6-3\left(-5\right)i^{2}}{61}
Multiply complex numbers 5-3i and 6-5i like you multiply binomials.
\frac{5\times 6+5\times \left(-5i\right)-3i\times 6-3\left(-5\right)\left(-1\right)}{61}
By definition, i^{2} is -1.
\frac{30-25i-18i-15}{61}
Do the multiplications in 5\times 6+5\times \left(-5i\right)-3i\times 6-3\left(-5\right)\left(-1\right).
\frac{30-15+\left(-25-18\right)i}{61}
Combine the real and imaginary parts in 30-25i-18i-15.
\frac{15-43i}{61}
Do the additions in 30-15+\left(-25-18\right)i.
\frac{15}{61}-\frac{43}{61}i
Divide 15-43i by 61 to get \frac{15}{61}-\frac{43}{61}i.
Re(\frac{\left(5-3i\right)\left(6-5i\right)}{\left(6+5i\right)\left(6-5i\right)})
Multiply both numerator and denominator of \frac{5-3i}{6+5i} by the complex conjugate of the denominator, 6-5i.
Re(\frac{\left(5-3i\right)\left(6-5i\right)}{6^{2}-5^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(5-3i\right)\left(6-5i\right)}{61})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{5\times 6+5\times \left(-5i\right)-3i\times 6-3\left(-5\right)i^{2}}{61})
Multiply complex numbers 5-3i and 6-5i like you multiply binomials.
Re(\frac{5\times 6+5\times \left(-5i\right)-3i\times 6-3\left(-5\right)\left(-1\right)}{61})
By definition, i^{2} is -1.
Re(\frac{30-25i-18i-15}{61})
Do the multiplications in 5\times 6+5\times \left(-5i\right)-3i\times 6-3\left(-5\right)\left(-1\right).
Re(\frac{30-15+\left(-25-18\right)i}{61})
Combine the real and imaginary parts in 30-25i-18i-15.
Re(\frac{15-43i}{61})
Do the additions in 30-15+\left(-25-18\right)i.
Re(\frac{15}{61}-\frac{43}{61}i)
Divide 15-43i by 61 to get \frac{15}{61}-\frac{43}{61}i.
\frac{15}{61}
The real part of \frac{15}{61}-\frac{43}{61}i is \frac{15}{61}.