Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(5-3\sqrt{2}\right)\left(2+2\sqrt{2}\right)}{\left(2-2\sqrt{2}\right)\left(2+2\sqrt{2}\right)}
Rationalize the denominator of \frac{5-3\sqrt{2}}{2-2\sqrt{2}} by multiplying numerator and denominator by 2+2\sqrt{2}.
\frac{\left(5-3\sqrt{2}\right)\left(2+2\sqrt{2}\right)}{2^{2}-\left(-2\sqrt{2}\right)^{2}}
Consider \left(2-2\sqrt{2}\right)\left(2+2\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(5-3\sqrt{2}\right)\left(2+2\sqrt{2}\right)}{4-\left(-2\sqrt{2}\right)^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{\left(5-3\sqrt{2}\right)\left(2+2\sqrt{2}\right)}{4-\left(-2\right)^{2}\left(\sqrt{2}\right)^{2}}
Expand \left(-2\sqrt{2}\right)^{2}.
\frac{\left(5-3\sqrt{2}\right)\left(2+2\sqrt{2}\right)}{4-4\left(\sqrt{2}\right)^{2}}
Calculate -2 to the power of 2 and get 4.
\frac{\left(5-3\sqrt{2}\right)\left(2+2\sqrt{2}\right)}{4-4\times 2}
The square of \sqrt{2} is 2.
\frac{\left(5-3\sqrt{2}\right)\left(2+2\sqrt{2}\right)}{4-8}
Multiply 4 and 2 to get 8.
\frac{\left(5-3\sqrt{2}\right)\left(2+2\sqrt{2}\right)}{-4}
Subtract 8 from 4 to get -4.
\frac{10+10\sqrt{2}-6\sqrt{2}-6\left(\sqrt{2}\right)^{2}}{-4}
Apply the distributive property by multiplying each term of 5-3\sqrt{2} by each term of 2+2\sqrt{2}.
\frac{10+4\sqrt{2}-6\left(\sqrt{2}\right)^{2}}{-4}
Combine 10\sqrt{2} and -6\sqrt{2} to get 4\sqrt{2}.
\frac{10+4\sqrt{2}-6\times 2}{-4}
The square of \sqrt{2} is 2.
\frac{10+4\sqrt{2}-12}{-4}
Multiply -6 and 2 to get -12.
\frac{-2+4\sqrt{2}}{-4}
Subtract 12 from 10 to get -2.