Solve for x
x\leq \frac{25}{38}
Graph
Share
Copied to clipboard
5\left(5-2x\right)\geq 4\times 7x
Multiply both sides of the equation by 20, the least common multiple of 4,5. Since 20 is positive, the inequality direction remains the same.
25-10x\geq 4\times 7x
Use the distributive property to multiply 5 by 5-2x.
25-10x\geq 28x
Multiply 4 and 7 to get 28.
25-10x-28x\geq 0
Subtract 28x from both sides.
25-38x\geq 0
Combine -10x and -28x to get -38x.
-38x\geq -25
Subtract 25 from both sides. Anything subtracted from zero gives its negation.
x\leq \frac{-25}{-38}
Divide both sides by -38. Since -38 is negative, the inequality direction is changed.
x\leq \frac{25}{38}
Fraction \frac{-25}{-38} can be simplified to \frac{25}{38} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}