Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

5\left(x+5\right)-10\sqrt{x-3}=40
Multiply both sides of the equation by 20, the least common multiple of 20,2.
5x+25-10\sqrt{x-3}=40
Use the distributive property to multiply 5 by x+5.
5x-10\sqrt{x-3}=40-25
Subtract 25 from both sides.
5x-10\sqrt{x-3}=15
Subtract 25 from 40 to get 15.
-10\sqrt{x-3}=15-5x
Subtract 5x from both sides of the equation.
\left(-10\sqrt{x-3}\right)^{2}=\left(15-5x\right)^{2}
Square both sides of the equation.
\left(-10\right)^{2}\left(\sqrt{x-3}\right)^{2}=\left(15-5x\right)^{2}
Expand \left(-10\sqrt{x-3}\right)^{2}.
100\left(\sqrt{x-3}\right)^{2}=\left(15-5x\right)^{2}
Calculate -10 to the power of 2 and get 100.
100\left(x-3\right)=\left(15-5x\right)^{2}
Calculate \sqrt{x-3} to the power of 2 and get x-3.
100x-300=\left(15-5x\right)^{2}
Use the distributive property to multiply 100 by x-3.
100x-300=225-150x+25x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(15-5x\right)^{2}.
100x-300+150x=225+25x^{2}
Add 150x to both sides.
250x-300=225+25x^{2}
Combine 100x and 150x to get 250x.
250x-300-25x^{2}=225
Subtract 25x^{2} from both sides.
-25x^{2}+250x-300=225
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-25x^{2}+250x-300-225=225-225
Subtract 225 from both sides of the equation.
-25x^{2}+250x-300-225=0
Subtracting 225 from itself leaves 0.
-25x^{2}+250x-525=0
Subtract 225 from -300.
x=\frac{-250±\sqrt{250^{2}-4\left(-25\right)\left(-525\right)}}{2\left(-25\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -25 for a, 250 for b, and -525 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-250±\sqrt{62500-4\left(-25\right)\left(-525\right)}}{2\left(-25\right)}
Square 250.
x=\frac{-250±\sqrt{62500+100\left(-525\right)}}{2\left(-25\right)}
Multiply -4 times -25.
x=\frac{-250±\sqrt{62500-52500}}{2\left(-25\right)}
Multiply 100 times -525.
x=\frac{-250±\sqrt{10000}}{2\left(-25\right)}
Add 62500 to -52500.
x=\frac{-250±100}{2\left(-25\right)}
Take the square root of 10000.
x=\frac{-250±100}{-50}
Multiply 2 times -25.
x=-\frac{150}{-50}
Now solve the equation x=\frac{-250±100}{-50} when ± is plus. Add -250 to 100.
x=3
Divide -150 by -50.
x=-\frac{350}{-50}
Now solve the equation x=\frac{-250±100}{-50} when ± is minus. Subtract 100 from -250.
x=7
Divide -350 by -50.
x=3 x=7
The equation is now solved.
\frac{5\left(3+5\right)}{20}-\frac{\sqrt{3-3}}{2}=2
Substitute 3 for x in the equation \frac{5\left(x+5\right)}{20}-\frac{\sqrt{x-3}}{2}=2.
2=2
Simplify. The value x=3 satisfies the equation.
\frac{5\left(7+5\right)}{20}-\frac{\sqrt{7-3}}{2}=2
Substitute 7 for x in the equation \frac{5\left(x+5\right)}{20}-\frac{\sqrt{x-3}}{2}=2.
2=2
Simplify. The value x=7 satisfies the equation.
x=3 x=7
List all solutions of -10\sqrt{x-3}=15-5x.