Evaluate
\frac{320\left(x+3\right)\left(x^{2}+6x+46\right)}{\left(x^{2}+6x+18\right)\left(x^{2}+6x+34\right)\left(x^{2}+6x+130\right)}
Expand
\frac{320\left(x^{3}+9x^{2}+64x+138\right)}{\left(x^{2}+6x+18\right)\left(x^{2}+6x+34\right)\left(x^{2}+6x+130\right)}
Graph
Share
Copied to clipboard
\frac{5\left(x+3\right)}{\left(x+3\right)^{2}+9}-\frac{5}{2}\left(\frac{\left(x+3\right)\left(\left(x+3\right)^{2}+25\right)}{\left(\left(x+3\right)^{2}+25\right)\left(\left(x+3\right)^{2}+121\right)}+\frac{\left(x+3\right)\left(\left(x+3\right)^{2}+121\right)}{\left(\left(x+3\right)^{2}+25\right)\left(\left(x+3\right)^{2}+121\right)}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+3\right)^{2}+121 and \left(x+3\right)^{2}+25 is \left(\left(x+3\right)^{2}+25\right)\left(\left(x+3\right)^{2}+121\right). Multiply \frac{x+3}{\left(x+3\right)^{2}+121} times \frac{\left(x+3\right)^{2}+25}{\left(x+3\right)^{2}+25}. Multiply \frac{x+3}{\left(x+3\right)^{2}+25} times \frac{\left(x+3\right)^{2}+121}{\left(x+3\right)^{2}+121}.
\frac{5\left(x+3\right)}{\left(x+3\right)^{2}+9}-\frac{5}{2}\times \frac{\left(x+3\right)\left(\left(x+3\right)^{2}+25\right)+\left(x+3\right)\left(\left(x+3\right)^{2}+121\right)}{\left(\left(x+3\right)^{2}+25\right)\left(\left(x+3\right)^{2}+121\right)}
Since \frac{\left(x+3\right)\left(\left(x+3\right)^{2}+25\right)}{\left(\left(x+3\right)^{2}+25\right)\left(\left(x+3\right)^{2}+121\right)} and \frac{\left(x+3\right)\left(\left(x+3\right)^{2}+121\right)}{\left(\left(x+3\right)^{2}+25\right)\left(\left(x+3\right)^{2}+121\right)} have the same denominator, add them by adding their numerators.
\frac{5\left(x+3\right)}{\left(x+3\right)^{2}+9}-\frac{5}{2}\times \frac{x^{3}+6x^{2}+34x+3x^{2}+18x+102+x^{3}+6x^{2}+130x+3x^{2}+18x+390}{\left(\left(x+3\right)^{2}+25\right)\left(\left(x+3\right)^{2}+121\right)}
Do the multiplications in \left(x+3\right)\left(\left(x+3\right)^{2}+25\right)+\left(x+3\right)\left(\left(x+3\right)^{2}+121\right).
\frac{5\left(x+3\right)}{\left(x+3\right)^{2}+9}-\frac{5}{2}\times \frac{2x^{3}+18x^{2}+200x+492}{\left(\left(x+3\right)^{2}+25\right)\left(\left(x+3\right)^{2}+121\right)}
Combine like terms in x^{3}+6x^{2}+34x+3x^{2}+18x+102+x^{3}+6x^{2}+130x+3x^{2}+18x+390.
\frac{5\left(x+3\right)}{\left(x+3\right)^{2}+9}-\frac{5\left(2x^{3}+18x^{2}+200x+492\right)}{2\left(\left(x+3\right)^{2}+25\right)\left(\left(x+3\right)^{2}+121\right)}
Multiply \frac{5}{2} times \frac{2x^{3}+18x^{2}+200x+492}{\left(\left(x+3\right)^{2}+25\right)\left(\left(x+3\right)^{2}+121\right)} by multiplying numerator times numerator and denominator times denominator.
\frac{5\left(x+3\right)}{\left(x+3\right)^{2}+9}-\frac{2\times 5\left(x+3\right)\left(x^{2}+6x+82\right)}{2\left(x^{2}+6x+34\right)\left(x^{2}+6x+130\right)}
Factor the expressions that are not already factored in \frac{5\left(2x^{3}+18x^{2}+200x+492\right)}{2\left(\left(x+3\right)^{2}+25\right)\left(\left(x+3\right)^{2}+121\right)}.
\frac{5\left(x+3\right)}{\left(x+3\right)^{2}+9}-\frac{5\left(x+3\right)\left(x^{2}+6x+82\right)}{\left(x^{2}+6x+34\right)\left(x^{2}+6x+130\right)}
Cancel out 2 in both numerator and denominator.
\frac{5\left(x+3\right)\left(x^{2}+6x+34\right)\left(x^{2}+6x+130\right)}{\left(x^{2}+6x+34\right)\left(x^{2}+6x+130\right)\left(\left(x+3\right)^{2}+9\right)}-\frac{5\left(x+3\right)\left(x^{2}+6x+82\right)\left(\left(x+3\right)^{2}+9\right)}{\left(x^{2}+6x+34\right)\left(x^{2}+6x+130\right)\left(\left(x+3\right)^{2}+9\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+3\right)^{2}+9 and \left(x^{2}+6x+34\right)\left(x^{2}+6x+130\right) is \left(x^{2}+6x+34\right)\left(x^{2}+6x+130\right)\left(\left(x+3\right)^{2}+9\right). Multiply \frac{5\left(x+3\right)}{\left(x+3\right)^{2}+9} times \frac{\left(x^{2}+6x+34\right)\left(x^{2}+6x+130\right)}{\left(x^{2}+6x+34\right)\left(x^{2}+6x+130\right)}. Multiply \frac{5\left(x+3\right)\left(x^{2}+6x+82\right)}{\left(x^{2}+6x+34\right)\left(x^{2}+6x+130\right)} times \frac{\left(x+3\right)^{2}+9}{\left(x+3\right)^{2}+9}.
\frac{5\left(x+3\right)\left(x^{2}+6x+34\right)\left(x^{2}+6x+130\right)-5\left(x+3\right)\left(x^{2}+6x+82\right)\left(\left(x+3\right)^{2}+9\right)}{\left(x^{2}+6x+34\right)\left(x^{2}+6x+130\right)\left(\left(x+3\right)^{2}+9\right)}
Since \frac{5\left(x+3\right)\left(x^{2}+6x+34\right)\left(x^{2}+6x+130\right)}{\left(x^{2}+6x+34\right)\left(x^{2}+6x+130\right)\left(\left(x+3\right)^{2}+9\right)} and \frac{5\left(x+3\right)\left(x^{2}+6x+82\right)\left(\left(x+3\right)^{2}+9\right)}{\left(x^{2}+6x+34\right)\left(x^{2}+6x+130\right)\left(\left(x+3\right)^{2}+9\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{5x^{5}+60x^{4}+1000x^{3}+4920x^{2}+22100x+15x^{4}+180x^{3}+3000x^{2}+14760x+66300-5x^{5}-60x^{4}-680x^{3}-3000x^{2}-7380x-15x^{4}-180x^{3}-2040x^{2}-9000x-22140}{\left(x^{2}+6x+34\right)\left(x^{2}+6x+130\right)\left(\left(x+3\right)^{2}+9\right)}
Do the multiplications in 5\left(x+3\right)\left(x^{2}+6x+34\right)\left(x^{2}+6x+130\right)-5\left(x+3\right)\left(x^{2}+6x+82\right)\left(\left(x+3\right)^{2}+9\right).
\frac{320x^{3}+2880x^{2}+20480x+44160}{\left(x^{2}+6x+34\right)\left(x^{2}+6x+130\right)\left(\left(x+3\right)^{2}+9\right)}
Combine like terms in 5x^{5}+60x^{4}+1000x^{3}+4920x^{2}+22100x+15x^{4}+180x^{3}+3000x^{2}+14760x+66300-5x^{5}-60x^{4}-680x^{3}-3000x^{2}-7380x-15x^{4}-180x^{3}-2040x^{2}-9000x-22140.
\frac{320x^{3}+2880x^{2}+20480x+44160}{x^{6}+18x^{5}+290x^{4}+2400x^{3}+13924x^{2}+44232x+79560}
Expand \left(x^{2}+6x+34\right)\left(x^{2}+6x+130\right)\left(\left(x+3\right)^{2}+9\right).
\frac{5\left(x+3\right)}{\left(x+3\right)^{2}+9}-\frac{5}{2}\left(\frac{\left(x+3\right)\left(\left(x+3\right)^{2}+25\right)}{\left(\left(x+3\right)^{2}+25\right)\left(\left(x+3\right)^{2}+121\right)}+\frac{\left(x+3\right)\left(\left(x+3\right)^{2}+121\right)}{\left(\left(x+3\right)^{2}+25\right)\left(\left(x+3\right)^{2}+121\right)}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+3\right)^{2}+121 and \left(x+3\right)^{2}+25 is \left(\left(x+3\right)^{2}+25\right)\left(\left(x+3\right)^{2}+121\right). Multiply \frac{x+3}{\left(x+3\right)^{2}+121} times \frac{\left(x+3\right)^{2}+25}{\left(x+3\right)^{2}+25}. Multiply \frac{x+3}{\left(x+3\right)^{2}+25} times \frac{\left(x+3\right)^{2}+121}{\left(x+3\right)^{2}+121}.
\frac{5\left(x+3\right)}{\left(x+3\right)^{2}+9}-\frac{5}{2}\times \frac{\left(x+3\right)\left(\left(x+3\right)^{2}+25\right)+\left(x+3\right)\left(\left(x+3\right)^{2}+121\right)}{\left(\left(x+3\right)^{2}+25\right)\left(\left(x+3\right)^{2}+121\right)}
Since \frac{\left(x+3\right)\left(\left(x+3\right)^{2}+25\right)}{\left(\left(x+3\right)^{2}+25\right)\left(\left(x+3\right)^{2}+121\right)} and \frac{\left(x+3\right)\left(\left(x+3\right)^{2}+121\right)}{\left(\left(x+3\right)^{2}+25\right)\left(\left(x+3\right)^{2}+121\right)} have the same denominator, add them by adding their numerators.
\frac{5\left(x+3\right)}{\left(x+3\right)^{2}+9}-\frac{5}{2}\times \frac{x^{3}+6x^{2}+34x+3x^{2}+18x+102+x^{3}+6x^{2}+130x+3x^{2}+18x+390}{\left(\left(x+3\right)^{2}+25\right)\left(\left(x+3\right)^{2}+121\right)}
Do the multiplications in \left(x+3\right)\left(\left(x+3\right)^{2}+25\right)+\left(x+3\right)\left(\left(x+3\right)^{2}+121\right).
\frac{5\left(x+3\right)}{\left(x+3\right)^{2}+9}-\frac{5}{2}\times \frac{2x^{3}+18x^{2}+200x+492}{\left(\left(x+3\right)^{2}+25\right)\left(\left(x+3\right)^{2}+121\right)}
Combine like terms in x^{3}+6x^{2}+34x+3x^{2}+18x+102+x^{3}+6x^{2}+130x+3x^{2}+18x+390.
\frac{5\left(x+3\right)}{\left(x+3\right)^{2}+9}-\frac{5\left(2x^{3}+18x^{2}+200x+492\right)}{2\left(\left(x+3\right)^{2}+25\right)\left(\left(x+3\right)^{2}+121\right)}
Multiply \frac{5}{2} times \frac{2x^{3}+18x^{2}+200x+492}{\left(\left(x+3\right)^{2}+25\right)\left(\left(x+3\right)^{2}+121\right)} by multiplying numerator times numerator and denominator times denominator.
\frac{5\left(x+3\right)}{\left(x+3\right)^{2}+9}-\frac{2\times 5\left(x+3\right)\left(x^{2}+6x+82\right)}{2\left(x^{2}+6x+34\right)\left(x^{2}+6x+130\right)}
Factor the expressions that are not already factored in \frac{5\left(2x^{3}+18x^{2}+200x+492\right)}{2\left(\left(x+3\right)^{2}+25\right)\left(\left(x+3\right)^{2}+121\right)}.
\frac{5\left(x+3\right)}{\left(x+3\right)^{2}+9}-\frac{5\left(x+3\right)\left(x^{2}+6x+82\right)}{\left(x^{2}+6x+34\right)\left(x^{2}+6x+130\right)}
Cancel out 2 in both numerator and denominator.
\frac{5\left(x+3\right)\left(x^{2}+6x+34\right)\left(x^{2}+6x+130\right)}{\left(x^{2}+6x+34\right)\left(x^{2}+6x+130\right)\left(\left(x+3\right)^{2}+9\right)}-\frac{5\left(x+3\right)\left(x^{2}+6x+82\right)\left(\left(x+3\right)^{2}+9\right)}{\left(x^{2}+6x+34\right)\left(x^{2}+6x+130\right)\left(\left(x+3\right)^{2}+9\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+3\right)^{2}+9 and \left(x^{2}+6x+34\right)\left(x^{2}+6x+130\right) is \left(x^{2}+6x+34\right)\left(x^{2}+6x+130\right)\left(\left(x+3\right)^{2}+9\right). Multiply \frac{5\left(x+3\right)}{\left(x+3\right)^{2}+9} times \frac{\left(x^{2}+6x+34\right)\left(x^{2}+6x+130\right)}{\left(x^{2}+6x+34\right)\left(x^{2}+6x+130\right)}. Multiply \frac{5\left(x+3\right)\left(x^{2}+6x+82\right)}{\left(x^{2}+6x+34\right)\left(x^{2}+6x+130\right)} times \frac{\left(x+3\right)^{2}+9}{\left(x+3\right)^{2}+9}.
\frac{5\left(x+3\right)\left(x^{2}+6x+34\right)\left(x^{2}+6x+130\right)-5\left(x+3\right)\left(x^{2}+6x+82\right)\left(\left(x+3\right)^{2}+9\right)}{\left(x^{2}+6x+34\right)\left(x^{2}+6x+130\right)\left(\left(x+3\right)^{2}+9\right)}
Since \frac{5\left(x+3\right)\left(x^{2}+6x+34\right)\left(x^{2}+6x+130\right)}{\left(x^{2}+6x+34\right)\left(x^{2}+6x+130\right)\left(\left(x+3\right)^{2}+9\right)} and \frac{5\left(x+3\right)\left(x^{2}+6x+82\right)\left(\left(x+3\right)^{2}+9\right)}{\left(x^{2}+6x+34\right)\left(x^{2}+6x+130\right)\left(\left(x+3\right)^{2}+9\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{5x^{5}+60x^{4}+1000x^{3}+4920x^{2}+22100x+15x^{4}+180x^{3}+3000x^{2}+14760x+66300-5x^{5}-60x^{4}-680x^{3}-3000x^{2}-7380x-15x^{4}-180x^{3}-2040x^{2}-9000x-22140}{\left(x^{2}+6x+34\right)\left(x^{2}+6x+130\right)\left(\left(x+3\right)^{2}+9\right)}
Do the multiplications in 5\left(x+3\right)\left(x^{2}+6x+34\right)\left(x^{2}+6x+130\right)-5\left(x+3\right)\left(x^{2}+6x+82\right)\left(\left(x+3\right)^{2}+9\right).
\frac{320x^{3}+2880x^{2}+20480x+44160}{\left(x^{2}+6x+34\right)\left(x^{2}+6x+130\right)\left(\left(x+3\right)^{2}+9\right)}
Combine like terms in 5x^{5}+60x^{4}+1000x^{3}+4920x^{2}+22100x+15x^{4}+180x^{3}+3000x^{2}+14760x+66300-5x^{5}-60x^{4}-680x^{3}-3000x^{2}-7380x-15x^{4}-180x^{3}-2040x^{2}-9000x-22140.
\frac{320x^{3}+2880x^{2}+20480x+44160}{x^{6}+18x^{5}+290x^{4}+2400x^{3}+13924x^{2}+44232x+79560}
Expand \left(x^{2}+6x+34\right)\left(x^{2}+6x+130\right)\left(\left(x+3\right)^{2}+9\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}