Evaluate
10-\frac{75}{4}i=10-18.75i
Real Part
10
Share
Copied to clipboard
\frac{5\left(15+8i\right)}{i\left(2+2\right)}
Calculate 4+i to the power of 2 and get 15+8i.
\frac{75+40i}{i\left(2+2\right)}
Multiply 5 and 15+8i to get 75+40i.
\frac{75+40i}{4i}
Add 2 and 2 to get 4.
\frac{-40+75i}{-4}
Multiply both numerator and denominator by imaginary unit i.
10-\frac{75}{4}i
Divide -40+75i by -4 to get 10-\frac{75}{4}i.
Re(\frac{5\left(15+8i\right)}{i\left(2+2\right)})
Calculate 4+i to the power of 2 and get 15+8i.
Re(\frac{75+40i}{i\left(2+2\right)})
Multiply 5 and 15+8i to get 75+40i.
Re(\frac{75+40i}{4i})
Add 2 and 2 to get 4.
Re(\frac{-40+75i}{-4})
Multiply both numerator and denominator of \frac{75+40i}{4i} by imaginary unit i.
Re(10-\frac{75}{4}i)
Divide -40+75i by -4 to get 10-\frac{75}{4}i.
10
The real part of 10-\frac{75}{4}i is 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}