Solve for x
x=-\frac{91\Theta -40}{2\left(13\Theta +36\right)}
\Theta \neq -\frac{36}{13}
Solve for Θ
\Theta =\frac{8\left(5-9x\right)}{13\left(2x+7\right)}
x\neq -\frac{7}{2}
Graph
Share
Copied to clipboard
2\times 5\left(3x-1\right)-12x=-\frac{13}{4}\Theta \left(2x+7\right)
Multiply both sides of the equation by 12, the least common multiple of 6,12,4.
10\left(3x-1\right)-12x=-\frac{13}{4}\Theta \left(2x+7\right)
Multiply 2 and 5 to get 10.
30x-10-12x=-\frac{13}{4}\Theta \left(2x+7\right)
Use the distributive property to multiply 10 by 3x-1.
18x-10=-\frac{13}{4}\Theta \left(2x+7\right)
Combine 30x and -12x to get 18x.
18x-10=-\frac{13}{2}\Theta x-\frac{91}{4}\Theta
Use the distributive property to multiply -\frac{13}{4}\Theta by 2x+7.
18x-10+\frac{13}{2}\Theta x=-\frac{91}{4}\Theta
Add \frac{13}{2}\Theta x to both sides.
18x+\frac{13}{2}\Theta x=-\frac{91}{4}\Theta +10
Add 10 to both sides.
\left(18+\frac{13}{2}\Theta \right)x=-\frac{91}{4}\Theta +10
Combine all terms containing x.
\left(\frac{13\Theta }{2}+18\right)x=-\frac{91\Theta }{4}+10
The equation is in standard form.
\frac{\left(\frac{13\Theta }{2}+18\right)x}{\frac{13\Theta }{2}+18}=\frac{-\frac{91\Theta }{4}+10}{\frac{13\Theta }{2}+18}
Divide both sides by 18+\frac{13}{2}\Theta .
x=\frac{-\frac{91\Theta }{4}+10}{\frac{13\Theta }{2}+18}
Dividing by 18+\frac{13}{2}\Theta undoes the multiplication by 18+\frac{13}{2}\Theta .
x=\frac{40-91\Theta }{2\left(13\Theta +36\right)}
Divide -\frac{91\Theta }{4}+10 by 18+\frac{13}{2}\Theta .
2\times 5\left(3x-1\right)-12x=-\frac{13}{4}\Theta \left(2x+7\right)
Multiply both sides of the equation by 12, the least common multiple of 6,12,4.
10\left(3x-1\right)-12x=-\frac{13}{4}\Theta \left(2x+7\right)
Multiply 2 and 5 to get 10.
30x-10-12x=-\frac{13}{4}\Theta \left(2x+7\right)
Use the distributive property to multiply 10 by 3x-1.
18x-10=-\frac{13}{4}\Theta \left(2x+7\right)
Combine 30x and -12x to get 18x.
18x-10=-\frac{13}{2}x\Theta -\frac{91}{4}\Theta
Use the distributive property to multiply -\frac{13}{4}\Theta by 2x+7.
-\frac{13}{2}x\Theta -\frac{91}{4}\Theta =18x-10
Swap sides so that all variable terms are on the left hand side.
\left(-\frac{13}{2}x-\frac{91}{4}\right)\Theta =18x-10
Combine all terms containing \Theta .
\left(-\frac{13x}{2}-\frac{91}{4}\right)\Theta =18x-10
The equation is in standard form.
\frac{\left(-\frac{13x}{2}-\frac{91}{4}\right)\Theta }{-\frac{13x}{2}-\frac{91}{4}}=\frac{18x-10}{-\frac{13x}{2}-\frac{91}{4}}
Divide both sides by -\frac{13}{2}x-\frac{91}{4}.
\Theta =\frac{18x-10}{-\frac{13x}{2}-\frac{91}{4}}
Dividing by -\frac{13}{2}x-\frac{91}{4} undoes the multiplication by -\frac{13}{2}x-\frac{91}{4}.
\Theta =-\frac{8\left(9x-5\right)}{13\left(2x+7\right)}
Divide 18x-10 by -\frac{13}{2}x-\frac{91}{4}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}