Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{5}{\left(x+1\right)\left(x+6\right)}+\frac{2x}{\left(x-4\right)\left(x+1\right)}
Factor x^{2}+7x+6. Factor x^{2}-3x-4.
\frac{5\left(x-4\right)}{\left(x-4\right)\left(x+1\right)\left(x+6\right)}+\frac{2x\left(x+6\right)}{\left(x-4\right)\left(x+1\right)\left(x+6\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+1\right)\left(x+6\right) and \left(x-4\right)\left(x+1\right) is \left(x-4\right)\left(x+1\right)\left(x+6\right). Multiply \frac{5}{\left(x+1\right)\left(x+6\right)} times \frac{x-4}{x-4}. Multiply \frac{2x}{\left(x-4\right)\left(x+1\right)} times \frac{x+6}{x+6}.
\frac{5\left(x-4\right)+2x\left(x+6\right)}{\left(x-4\right)\left(x+1\right)\left(x+6\right)}
Since \frac{5\left(x-4\right)}{\left(x-4\right)\left(x+1\right)\left(x+6\right)} and \frac{2x\left(x+6\right)}{\left(x-4\right)\left(x+1\right)\left(x+6\right)} have the same denominator, add them by adding their numerators.
\frac{5x-20+2x^{2}+12x}{\left(x-4\right)\left(x+1\right)\left(x+6\right)}
Do the multiplications in 5\left(x-4\right)+2x\left(x+6\right).
\frac{17x-20+2x^{2}}{\left(x-4\right)\left(x+1\right)\left(x+6\right)}
Combine like terms in 5x-20+2x^{2}+12x.
\frac{17x-20+2x^{2}}{x^{3}+3x^{2}-22x-24}
Expand \left(x-4\right)\left(x+1\right)\left(x+6\right).