Solve for x
x = -\frac{10}{3} = -3\frac{1}{3} \approx -3.333333333
Graph
Share
Copied to clipboard
5=x-1-\left(x+3\right)\times 28
Variable x cannot be equal to any of the values -3,1 since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)\left(x+3\right), the least common multiple of x^{2}+2x-3,x+3,x-1.
5=x-1-\left(28x+84\right)
Use the distributive property to multiply x+3 by 28.
5=x-1-28x-84
To find the opposite of 28x+84, find the opposite of each term.
5=-27x-1-84
Combine x and -28x to get -27x.
5=-27x-85
Subtract 84 from -1 to get -85.
-27x-85=5
Swap sides so that all variable terms are on the left hand side.
-27x=5+85
Add 85 to both sides.
-27x=90
Add 5 and 85 to get 90.
x=\frac{90}{-27}
Divide both sides by -27.
x=-\frac{10}{3}
Reduce the fraction \frac{90}{-27} to lowest terms by extracting and canceling out 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}