Solve for x
x = \frac{17}{2} = 8\frac{1}{2} = 8.5
Graph
Share
Copied to clipboard
15\times 5=\left(x+4\right)\times 6
Variable x cannot be equal to -4 since division by zero is not defined. Multiply both sides of the equation by 15\left(x+4\right), the least common multiple of x+4,15.
75=\left(x+4\right)\times 6
Multiply 15 and 5 to get 75.
75=6x+24
Use the distributive property to multiply x+4 by 6.
6x+24=75
Swap sides so that all variable terms are on the left hand side.
6x=75-24
Subtract 24 from both sides.
6x=51
Subtract 24 from 75 to get 51.
x=\frac{51}{6}
Divide both sides by 6.
x=\frac{17}{2}
Reduce the fraction \frac{51}{6} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}