Solve for x
x=-3m+2+\frac{5}{m}
m\neq 0\text{ and }m\neq -1
Solve for m
\left\{\begin{matrix}\\m=\frac{\sqrt{x^{2}-4x+64}}{6}-\frac{x}{6}+\frac{1}{3}\text{, }&\text{unconditionally}\\m=-\frac{\sqrt{x^{2}-4x+64}}{6}-\frac{x}{6}+\frac{1}{3}\text{, }&x\neq 0\end{matrix}\right.
Graph
Share
Copied to clipboard
\left(m+1\right)\times 5-mx=3m\left(m+1\right)
Multiply both sides of the equation by m\left(m+1\right), the least common multiple of m,m+1.
5m+5-mx=3m\left(m+1\right)
Use the distributive property to multiply m+1 by 5.
5m+5-mx=3m^{2}+3m
Use the distributive property to multiply 3m by m+1.
5-mx=3m^{2}+3m-5m
Subtract 5m from both sides.
5-mx=3m^{2}-2m
Combine 3m and -5m to get -2m.
-mx=3m^{2}-2m-5
Subtract 5 from both sides.
\left(-m\right)x=3m^{2}-2m-5
The equation is in standard form.
\frac{\left(-m\right)x}{-m}=\frac{\left(3m-5\right)\left(m+1\right)}{-m}
Divide both sides by -m.
x=\frac{\left(3m-5\right)\left(m+1\right)}{-m}
Dividing by -m undoes the multiplication by -m.
x=-3m+2+\frac{5}{m}
Divide \left(-5+3m\right)\left(1+m\right) by -m.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}