Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{5\left(8+i\right)}{\left(8-i\right)\left(8+i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 8+i.
\frac{5\left(8+i\right)}{8^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{5\left(8+i\right)}{65}
By definition, i^{2} is -1. Calculate the denominator.
\frac{5\times 8+5i}{65}
Multiply 5 times 8+i.
\frac{40+5i}{65}
Do the multiplications in 5\times 8+5i.
\frac{8}{13}+\frac{1}{13}i
Divide 40+5i by 65 to get \frac{8}{13}+\frac{1}{13}i.
Re(\frac{5\left(8+i\right)}{\left(8-i\right)\left(8+i\right)})
Multiply both numerator and denominator of \frac{5}{8-i} by the complex conjugate of the denominator, 8+i.
Re(\frac{5\left(8+i\right)}{8^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{5\left(8+i\right)}{65})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{5\times 8+5i}{65})
Multiply 5 times 8+i.
Re(\frac{40+5i}{65})
Do the multiplications in 5\times 8+5i.
Re(\frac{8}{13}+\frac{1}{13}i)
Divide 40+5i by 65 to get \frac{8}{13}+\frac{1}{13}i.
\frac{8}{13}
The real part of \frac{8}{13}+\frac{1}{13}i is \frac{8}{13}.