Evaluate
\frac{17}{24}\approx 0.708333333
Factor
\frac{17}{2 ^ {3} \cdot 3} = 0.7083333333333334
Share
Copied to clipboard
\frac{25}{40}+\frac{6}{40}+\frac{-1}{15}
Least common multiple of 8 and 20 is 40. Convert \frac{5}{8} and \frac{3}{20} to fractions with denominator 40.
\frac{25+6}{40}+\frac{-1}{15}
Since \frac{25}{40} and \frac{6}{40} have the same denominator, add them by adding their numerators.
\frac{31}{40}+\frac{-1}{15}
Add 25 and 6 to get 31.
\frac{31}{40}-\frac{1}{15}
Fraction \frac{-1}{15} can be rewritten as -\frac{1}{15} by extracting the negative sign.
\frac{93}{120}-\frac{8}{120}
Least common multiple of 40 and 15 is 120. Convert \frac{31}{40} and \frac{1}{15} to fractions with denominator 120.
\frac{93-8}{120}
Since \frac{93}{120} and \frac{8}{120} have the same denominator, subtract them by subtracting their numerators.
\frac{85}{120}
Subtract 8 from 93 to get 85.
\frac{17}{24}
Reduce the fraction \frac{85}{120} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}