Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{5\left(7\sqrt{3}-\sqrt{5}\right)}{\left(7\sqrt{3}+\sqrt{5}\right)\left(7\sqrt{3}-\sqrt{5}\right)}
Rationalize the denominator of \frac{5}{7\sqrt{3}+\sqrt{5}} by multiplying numerator and denominator by 7\sqrt{3}-\sqrt{5}.
\frac{5\left(7\sqrt{3}-\sqrt{5}\right)}{\left(7\sqrt{3}\right)^{2}-\left(\sqrt{5}\right)^{2}}
Consider \left(7\sqrt{3}+\sqrt{5}\right)\left(7\sqrt{3}-\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{5\left(7\sqrt{3}-\sqrt{5}\right)}{7^{2}\left(\sqrt{3}\right)^{2}-\left(\sqrt{5}\right)^{2}}
Expand \left(7\sqrt{3}\right)^{2}.
\frac{5\left(7\sqrt{3}-\sqrt{5}\right)}{49\left(\sqrt{3}\right)^{2}-\left(\sqrt{5}\right)^{2}}
Calculate 7 to the power of 2 and get 49.
\frac{5\left(7\sqrt{3}-\sqrt{5}\right)}{49\times 3-\left(\sqrt{5}\right)^{2}}
The square of \sqrt{3} is 3.
\frac{5\left(7\sqrt{3}-\sqrt{5}\right)}{147-\left(\sqrt{5}\right)^{2}}
Multiply 49 and 3 to get 147.
\frac{5\left(7\sqrt{3}-\sqrt{5}\right)}{147-5}
The square of \sqrt{5} is 5.
\frac{5\left(7\sqrt{3}-\sqrt{5}\right)}{142}
Subtract 5 from 147 to get 142.
\frac{35\sqrt{3}-5\sqrt{5}}{142}
Use the distributive property to multiply 5 by 7\sqrt{3}-\sqrt{5}.