Evaluate
\frac{35\sqrt{3}-5\sqrt{5}}{142}\approx 0.348179144
Share
Copied to clipboard
\frac{5\left(7\sqrt{3}-\sqrt{5}\right)}{\left(7\sqrt{3}+\sqrt{5}\right)\left(7\sqrt{3}-\sqrt{5}\right)}
Rationalize the denominator of \frac{5}{7\sqrt{3}+\sqrt{5}} by multiplying numerator and denominator by 7\sqrt{3}-\sqrt{5}.
\frac{5\left(7\sqrt{3}-\sqrt{5}\right)}{\left(7\sqrt{3}\right)^{2}-\left(\sqrt{5}\right)^{2}}
Consider \left(7\sqrt{3}+\sqrt{5}\right)\left(7\sqrt{3}-\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{5\left(7\sqrt{3}-\sqrt{5}\right)}{7^{2}\left(\sqrt{3}\right)^{2}-\left(\sqrt{5}\right)^{2}}
Expand \left(7\sqrt{3}\right)^{2}.
\frac{5\left(7\sqrt{3}-\sqrt{5}\right)}{49\left(\sqrt{3}\right)^{2}-\left(\sqrt{5}\right)^{2}}
Calculate 7 to the power of 2 and get 49.
\frac{5\left(7\sqrt{3}-\sqrt{5}\right)}{49\times 3-\left(\sqrt{5}\right)^{2}}
The square of \sqrt{3} is 3.
\frac{5\left(7\sqrt{3}-\sqrt{5}\right)}{147-\left(\sqrt{5}\right)^{2}}
Multiply 49 and 3 to get 147.
\frac{5\left(7\sqrt{3}-\sqrt{5}\right)}{147-5}
The square of \sqrt{5} is 5.
\frac{5\left(7\sqrt{3}-\sqrt{5}\right)}{142}
Subtract 5 from 147 to get 142.
\frac{35\sqrt{3}-5\sqrt{5}}{142}
Use the distributive property to multiply 5 by 7\sqrt{3}-\sqrt{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}