Evaluate
\frac{9+10c-8b}{12abc}
Factor
\frac{9+10c-8b}{12abc}
Share
Copied to clipboard
\frac{5c}{6abc}-\frac{2\times 2b}{6abc}+\frac{3}{4abc}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 6ab and 3ac is 6abc. Multiply \frac{5}{6ab} times \frac{c}{c}. Multiply \frac{2}{3ac} times \frac{2b}{2b}.
\frac{5c-2\times 2b}{6abc}+\frac{3}{4abc}
Since \frac{5c}{6abc} and \frac{2\times 2b}{6abc} have the same denominator, subtract them by subtracting their numerators.
\frac{5c-4b}{6abc}+\frac{3}{4abc}
Do the multiplications in 5c-2\times 2b.
\frac{2\left(5c-4b\right)}{12abc}+\frac{3\times 3}{12abc}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 6abc and 4abc is 12abc. Multiply \frac{5c-4b}{6abc} times \frac{2}{2}. Multiply \frac{3}{4abc} times \frac{3}{3}.
\frac{2\left(5c-4b\right)+3\times 3}{12abc}
Since \frac{2\left(5c-4b\right)}{12abc} and \frac{3\times 3}{12abc} have the same denominator, add them by adding their numerators.
\frac{10c-8b+9}{12abc}
Do the multiplications in 2\left(5c-4b\right)+3\times 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}