\frac { 5 } { 6 } m ^ { 3 } \text { restar } - \frac { 1 } { 3 } m ^ { 3 } + \frac { 7 } { 8 } m ^ { 2 } n e s =
Factor
\frac{m^{2}\left(20m\left(-Im(s)\left(Re(t)\left(Re(a)Im(r)+Re(r)Im(a)\right)+Im(t)\left(Re(a)Re(r)-Im(a)Im(r)\right)\right)+Re(s)\left(-Im(t)\left(Re(a)Im(r)+Re(r)Im(a)\right)+Re(t)\left(Re(a)Re(r)-Im(a)Im(r)\right)\right)\right)+21ens-8m\right)}{24}
Evaluate
\frac{m^{2}\left(20m\left(-Im(s)\left(Re(t)\left(Re(a)Im(r)+Re(r)Im(a)\right)+Im(t)\left(Re(a)Re(r)-Im(a)Im(r)\right)\right)+Re(s)\left(-Im(t)\left(Re(a)Im(r)+Re(r)Im(a)\right)+Re(t)\left(Re(a)Re(r)-Im(a)Im(r)\right)\right)\right)+21ens-8m\right)}{24}
Share
Copied to clipboard
\frac{20m^{3}Re(star)-8m^{3}+21m^{2}nes}{24}
Factor out \frac{1}{24}.
m^{2}\left(20mRe(star)-8m+21nes\right)
Consider 20m^{3}Re(star)-8m^{3}+21m^{2}nes. Factor out m^{2}.
\frac{m^{2}\left(20mRe(star)-8m+21nes\right)}{24}
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}