Solve for x
x\geq -\frac{3}{4}
Graph
Share
Copied to clipboard
\frac{5}{6}x+\frac{5}{6}\left(-3\right)-\frac{1}{2}\left(x-4\right)\geq \frac{1}{3}\left(2x-3\right)-x
Use the distributive property to multiply \frac{5}{6} by x-3.
\frac{5}{6}x+\frac{5\left(-3\right)}{6}-\frac{1}{2}\left(x-4\right)\geq \frac{1}{3}\left(2x-3\right)-x
Express \frac{5}{6}\left(-3\right) as a single fraction.
\frac{5}{6}x+\frac{-15}{6}-\frac{1}{2}\left(x-4\right)\geq \frac{1}{3}\left(2x-3\right)-x
Multiply 5 and -3 to get -15.
\frac{5}{6}x-\frac{5}{2}-\frac{1}{2}\left(x-4\right)\geq \frac{1}{3}\left(2x-3\right)-x
Reduce the fraction \frac{-15}{6} to lowest terms by extracting and canceling out 3.
\frac{5}{6}x-\frac{5}{2}-\frac{1}{2}x-\frac{1}{2}\left(-4\right)\geq \frac{1}{3}\left(2x-3\right)-x
Use the distributive property to multiply -\frac{1}{2} by x-4.
\frac{5}{6}x-\frac{5}{2}-\frac{1}{2}x+\frac{-\left(-4\right)}{2}\geq \frac{1}{3}\left(2x-3\right)-x
Express -\frac{1}{2}\left(-4\right) as a single fraction.
\frac{5}{6}x-\frac{5}{2}-\frac{1}{2}x+\frac{4}{2}\geq \frac{1}{3}\left(2x-3\right)-x
Multiply -1 and -4 to get 4.
\frac{5}{6}x-\frac{5}{2}-\frac{1}{2}x+2\geq \frac{1}{3}\left(2x-3\right)-x
Divide 4 by 2 to get 2.
\frac{1}{3}x-\frac{5}{2}+2\geq \frac{1}{3}\left(2x-3\right)-x
Combine \frac{5}{6}x and -\frac{1}{2}x to get \frac{1}{3}x.
\frac{1}{3}x-\frac{5}{2}+\frac{4}{2}\geq \frac{1}{3}\left(2x-3\right)-x
Convert 2 to fraction \frac{4}{2}.
\frac{1}{3}x+\frac{-5+4}{2}\geq \frac{1}{3}\left(2x-3\right)-x
Since -\frac{5}{2} and \frac{4}{2} have the same denominator, add them by adding their numerators.
\frac{1}{3}x-\frac{1}{2}\geq \frac{1}{3}\left(2x-3\right)-x
Add -5 and 4 to get -1.
\frac{1}{3}x-\frac{1}{2}\geq \frac{1}{3}\times 2x+\frac{1}{3}\left(-3\right)-x
Use the distributive property to multiply \frac{1}{3} by 2x-3.
\frac{1}{3}x-\frac{1}{2}\geq \frac{2}{3}x+\frac{1}{3}\left(-3\right)-x
Multiply \frac{1}{3} and 2 to get \frac{2}{3}.
\frac{1}{3}x-\frac{1}{2}\geq \frac{2}{3}x+\frac{-3}{3}-x
Multiply \frac{1}{3} and -3 to get \frac{-3}{3}.
\frac{1}{3}x-\frac{1}{2}\geq \frac{2}{3}x-1-x
Divide -3 by 3 to get -1.
\frac{1}{3}x-\frac{1}{2}\geq -\frac{1}{3}x-1
Combine \frac{2}{3}x and -x to get -\frac{1}{3}x.
\frac{1}{3}x-\frac{1}{2}+\frac{1}{3}x\geq -1
Add \frac{1}{3}x to both sides.
\frac{2}{3}x-\frac{1}{2}\geq -1
Combine \frac{1}{3}x and \frac{1}{3}x to get \frac{2}{3}x.
\frac{2}{3}x\geq -1+\frac{1}{2}
Add \frac{1}{2} to both sides.
\frac{2}{3}x\geq -\frac{2}{2}+\frac{1}{2}
Convert -1 to fraction -\frac{2}{2}.
\frac{2}{3}x\geq \frac{-2+1}{2}
Since -\frac{2}{2} and \frac{1}{2} have the same denominator, add them by adding their numerators.
\frac{2}{3}x\geq -\frac{1}{2}
Add -2 and 1 to get -1.
x\geq -\frac{1}{2}\times \frac{3}{2}
Multiply both sides by \frac{3}{2}, the reciprocal of \frac{2}{3}. Since \frac{2}{3} is positive, the inequality direction remains the same.
x\geq \frac{-3}{2\times 2}
Multiply -\frac{1}{2} times \frac{3}{2} by multiplying numerator times numerator and denominator times denominator.
x\geq \frac{-3}{4}
Do the multiplications in the fraction \frac{-3}{2\times 2}.
x\geq -\frac{3}{4}
Fraction \frac{-3}{4} can be rewritten as -\frac{3}{4} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}