Solve for x
x\leq 3
Graph
Share
Copied to clipboard
\frac{5}{6}\times 3+\frac{5}{6}\left(-1\right)x-\frac{1}{2}\left(x-4\right)\geq \frac{1}{2}
Use the distributive property to multiply \frac{5}{6} by 3-x.
\frac{5\times 3}{6}+\frac{5}{6}\left(-1\right)x-\frac{1}{2}\left(x-4\right)\geq \frac{1}{2}
Express \frac{5}{6}\times 3 as a single fraction.
\frac{15}{6}+\frac{5}{6}\left(-1\right)x-\frac{1}{2}\left(x-4\right)\geq \frac{1}{2}
Multiply 5 and 3 to get 15.
\frac{5}{2}+\frac{5}{6}\left(-1\right)x-\frac{1}{2}\left(x-4\right)\geq \frac{1}{2}
Reduce the fraction \frac{15}{6} to lowest terms by extracting and canceling out 3.
\frac{5}{2}-\frac{5}{6}x-\frac{1}{2}\left(x-4\right)\geq \frac{1}{2}
Multiply \frac{5}{6} and -1 to get -\frac{5}{6}.
\frac{5}{2}-\frac{5}{6}x-\frac{1}{2}x-\frac{1}{2}\left(-4\right)\geq \frac{1}{2}
Use the distributive property to multiply -\frac{1}{2} by x-4.
\frac{5}{2}-\frac{5}{6}x-\frac{1}{2}x+\frac{-\left(-4\right)}{2}\geq \frac{1}{2}
Express -\frac{1}{2}\left(-4\right) as a single fraction.
\frac{5}{2}-\frac{5}{6}x-\frac{1}{2}x+\frac{4}{2}\geq \frac{1}{2}
Multiply -1 and -4 to get 4.
\frac{5}{2}-\frac{5}{6}x-\frac{1}{2}x+2\geq \frac{1}{2}
Divide 4 by 2 to get 2.
\frac{5}{2}-\frac{4}{3}x+2\geq \frac{1}{2}
Combine -\frac{5}{6}x and -\frac{1}{2}x to get -\frac{4}{3}x.
\frac{5}{2}-\frac{4}{3}x+\frac{4}{2}\geq \frac{1}{2}
Convert 2 to fraction \frac{4}{2}.
\frac{5+4}{2}-\frac{4}{3}x\geq \frac{1}{2}
Since \frac{5}{2} and \frac{4}{2} have the same denominator, add them by adding their numerators.
\frac{9}{2}-\frac{4}{3}x\geq \frac{1}{2}
Add 5 and 4 to get 9.
-\frac{4}{3}x\geq \frac{1}{2}-\frac{9}{2}
Subtract \frac{9}{2} from both sides.
-\frac{4}{3}x\geq \frac{1-9}{2}
Since \frac{1}{2} and \frac{9}{2} have the same denominator, subtract them by subtracting their numerators.
-\frac{4}{3}x\geq \frac{-8}{2}
Subtract 9 from 1 to get -8.
-\frac{4}{3}x\geq -4
Divide -8 by 2 to get -4.
x\leq -4\left(-\frac{3}{4}\right)
Multiply both sides by -\frac{3}{4}, the reciprocal of -\frac{4}{3}. Since -\frac{4}{3} is negative, the inequality direction is changed.
x\leq 3
Multiply -4 times -\frac{3}{4}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}