Solve for x
x=3
Graph
Share
Copied to clipboard
\frac{11}{6}x+8=\frac{5}{6}+4x+\frac{2}{3}
Combine \frac{5}{6}x and x to get \frac{11}{6}x.
\frac{11}{6}x+8=\frac{5}{6}+4x+\frac{4}{6}
Least common multiple of 6 and 3 is 6. Convert \frac{5}{6} and \frac{2}{3} to fractions with denominator 6.
\frac{11}{6}x+8=\frac{5+4}{6}+4x
Since \frac{5}{6} and \frac{4}{6} have the same denominator, add them by adding their numerators.
\frac{11}{6}x+8=\frac{9}{6}+4x
Add 5 and 4 to get 9.
\frac{11}{6}x+8=\frac{3}{2}+4x
Reduce the fraction \frac{9}{6} to lowest terms by extracting and canceling out 3.
\frac{11}{6}x+8-4x=\frac{3}{2}
Subtract 4x from both sides.
-\frac{13}{6}x+8=\frac{3}{2}
Combine \frac{11}{6}x and -4x to get -\frac{13}{6}x.
-\frac{13}{6}x=\frac{3}{2}-8
Subtract 8 from both sides.
-\frac{13}{6}x=\frac{3}{2}-\frac{16}{2}
Convert 8 to fraction \frac{16}{2}.
-\frac{13}{6}x=\frac{3-16}{2}
Since \frac{3}{2} and \frac{16}{2} have the same denominator, subtract them by subtracting their numerators.
-\frac{13}{6}x=-\frac{13}{2}
Subtract 16 from 3 to get -13.
x=-\frac{13}{2}\left(-\frac{6}{13}\right)
Multiply both sides by -\frac{6}{13}, the reciprocal of -\frac{13}{6}.
x=\frac{-13\left(-6\right)}{2\times 13}
Multiply -\frac{13}{2} times -\frac{6}{13} by multiplying numerator times numerator and denominator times denominator.
x=\frac{78}{26}
Do the multiplications in the fraction \frac{-13\left(-6\right)}{2\times 13}.
x=3
Divide 78 by 26 to get 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}