Evaluate
\frac{29}{2}=14.5
Factor
\frac{29}{2} = 14\frac{1}{2} = 14.5
Share
Copied to clipboard
\frac{5}{6}\left(13-\left(-\frac{3\times 5+7}{5}\right)\right)
Add -4 and 17 to get 13.
\frac{5}{6}\left(13-\left(-\frac{15+7}{5}\right)\right)
Multiply 3 and 5 to get 15.
\frac{5}{6}\left(13-\left(-\frac{22}{5}\right)\right)
Add 15 and 7 to get 22.
\frac{5}{6}\left(13+\frac{22}{5}\right)
The opposite of -\frac{22}{5} is \frac{22}{5}.
\frac{5}{6}\left(\frac{65}{5}+\frac{22}{5}\right)
Convert 13 to fraction \frac{65}{5}.
\frac{5}{6}\times \frac{65+22}{5}
Since \frac{65}{5} and \frac{22}{5} have the same denominator, add them by adding their numerators.
\frac{5}{6}\times \frac{87}{5}
Add 65 and 22 to get 87.
\frac{5\times 87}{6\times 5}
Multiply \frac{5}{6} times \frac{87}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{87}{6}
Cancel out 5 in both numerator and denominator.
\frac{29}{2}
Reduce the fraction \frac{87}{6} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}