Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{5}{5\left(a-1\right)}-\frac{5}{3\left(a-2\right)}
Factor 5a-5. Factor 3a-6.
\frac{5\times 3\left(a-2\right)}{15\left(a-2\right)\left(a-1\right)}-\frac{5\times 5\left(a-1\right)}{15\left(a-2\right)\left(a-1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 5\left(a-1\right) and 3\left(a-2\right) is 15\left(a-2\right)\left(a-1\right). Multiply \frac{5}{5\left(a-1\right)} times \frac{3\left(a-2\right)}{3\left(a-2\right)}. Multiply \frac{5}{3\left(a-2\right)} times \frac{5\left(a-1\right)}{5\left(a-1\right)}.
\frac{5\times 3\left(a-2\right)-5\times 5\left(a-1\right)}{15\left(a-2\right)\left(a-1\right)}
Since \frac{5\times 3\left(a-2\right)}{15\left(a-2\right)\left(a-1\right)} and \frac{5\times 5\left(a-1\right)}{15\left(a-2\right)\left(a-1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{15a-30-25a+25}{15\left(a-2\right)\left(a-1\right)}
Do the multiplications in 5\times 3\left(a-2\right)-5\times 5\left(a-1\right).
\frac{-10a-5}{15\left(a-2\right)\left(a-1\right)}
Combine like terms in 15a-30-25a+25.
\frac{5\left(-2a-1\right)}{15\left(a-2\right)\left(a-1\right)}
Factor the expressions that are not already factored in \frac{-10a-5}{15\left(a-2\right)\left(a-1\right)}.
\frac{-2a-1}{3\left(a-2\right)\left(a-1\right)}
Cancel out 5 in both numerator and denominator.
\frac{-2a-1}{3a^{2}-9a+6}
Expand 3\left(a-2\right)\left(a-1\right).