Solve for f (complex solution)
f=\frac{4}{\sqrt{k}-3}
k\neq 9
Solve for f
f=\frac{4}{\sqrt{k}-3}
k\neq 9\text{ and }k\geq 0
Solve for k (complex solution)
k=\left(3+\frac{4}{f}\right)^{2}
f\neq 0\text{ and }\left(arg(3+\frac{4}{f})<\pi \text{ or }f=-\frac{4}{3}\right)\text{ and }f\neq -\frac{2}{3}
Solve for k
k=\left(3+\frac{4}{f}\right)^{2}
f>0\text{ or }f\leq -\frac{4}{3}
Share
Copied to clipboard
\frac{5}{4}f=\frac{5}{\sqrt{k}-3}
The equation is in standard form.
\frac{\frac{5}{4}f}{\frac{5}{4}}=\frac{5}{\frac{5}{4}\left(\sqrt{k}-3\right)}
Divide both sides of the equation by \frac{5}{4}, which is the same as multiplying both sides by the reciprocal of the fraction.
f=\frac{5}{\frac{5}{4}\left(\sqrt{k}-3\right)}
Dividing by \frac{5}{4} undoes the multiplication by \frac{5}{4}.
f=\frac{4}{\sqrt{k}-3}
Divide \frac{5}{-3+\sqrt{k}} by \frac{5}{4} by multiplying \frac{5}{-3+\sqrt{k}} by the reciprocal of \frac{5}{4}.
\frac{5}{4}f=\frac{5}{\sqrt{k}-3}
The equation is in standard form.
\frac{\frac{5}{4}f}{\frac{5}{4}}=\frac{5}{\frac{5}{4}\left(\sqrt{k}-3\right)}
Divide both sides of the equation by \frac{5}{4}, which is the same as multiplying both sides by the reciprocal of the fraction.
f=\frac{5}{\frac{5}{4}\left(\sqrt{k}-3\right)}
Dividing by \frac{5}{4} undoes the multiplication by \frac{5}{4}.
f=\frac{4}{\sqrt{k}-3}
Divide \frac{5}{-3+\sqrt{k}} by \frac{5}{4} by multiplying \frac{5}{-3+\sqrt{k}} by the reciprocal of \frac{5}{4}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}