Evaluate
\frac{288058967}{144276}\approx 1996.582709529
Factor
\frac{7 \cdot 103 \cdot 399527}{2 ^ {2} \cdot 3 \cdot 11 \cdot 1093} = 1996\frac{84071}{144276} = 1996.5827095289583
Share
Copied to clipboard
\frac{\frac{5}{4}}{-\frac{12018+5}{6}}-\frac{2002\times 3+2}{3}-\frac{1\times 2+1}{2}+\frac{4000\times 4+3}{4}
Multiply 2003 and 6 to get 12018.
\frac{\frac{5}{4}}{-\frac{12023}{6}}-\frac{2002\times 3+2}{3}-\frac{1\times 2+1}{2}+\frac{4000\times 4+3}{4}
Add 12018 and 5 to get 12023.
\frac{5}{4}\left(-\frac{6}{12023}\right)-\frac{2002\times 3+2}{3}-\frac{1\times 2+1}{2}+\frac{4000\times 4+3}{4}
Divide \frac{5}{4} by -\frac{12023}{6} by multiplying \frac{5}{4} by the reciprocal of -\frac{12023}{6}.
\frac{5\left(-6\right)}{4\times 12023}-\frac{2002\times 3+2}{3}-\frac{1\times 2+1}{2}+\frac{4000\times 4+3}{4}
Multiply \frac{5}{4} times -\frac{6}{12023} by multiplying numerator times numerator and denominator times denominator.
\frac{-30}{48092}-\frac{2002\times 3+2}{3}-\frac{1\times 2+1}{2}+\frac{4000\times 4+3}{4}
Do the multiplications in the fraction \frac{5\left(-6\right)}{4\times 12023}.
-\frac{15}{24046}-\frac{2002\times 3+2}{3}-\frac{1\times 2+1}{2}+\frac{4000\times 4+3}{4}
Reduce the fraction \frac{-30}{48092} to lowest terms by extracting and canceling out 2.
-\frac{15}{24046}-\frac{6006+2}{3}-\frac{1\times 2+1}{2}+\frac{4000\times 4+3}{4}
Multiply 2002 and 3 to get 6006.
-\frac{15}{24046}-\frac{6008}{3}-\frac{1\times 2+1}{2}+\frac{4000\times 4+3}{4}
Add 6006 and 2 to get 6008.
-\frac{45}{72138}-\frac{144468368}{72138}-\frac{1\times 2+1}{2}+\frac{4000\times 4+3}{4}
Least common multiple of 24046 and 3 is 72138. Convert -\frac{15}{24046} and \frac{6008}{3} to fractions with denominator 72138.
\frac{-45-144468368}{72138}-\frac{1\times 2+1}{2}+\frac{4000\times 4+3}{4}
Since -\frac{45}{72138} and \frac{144468368}{72138} have the same denominator, subtract them by subtracting their numerators.
-\frac{144468413}{72138}-\frac{1\times 2+1}{2}+\frac{4000\times 4+3}{4}
Subtract 144468368 from -45 to get -144468413.
-\frac{144468413}{72138}-\frac{2+1}{2}+\frac{4000\times 4+3}{4}
Multiply 1 and 2 to get 2.
-\frac{144468413}{72138}-\frac{3}{2}+\frac{4000\times 4+3}{4}
Add 2 and 1 to get 3.
-\frac{144468413}{72138}-\frac{108207}{72138}+\frac{4000\times 4+3}{4}
Least common multiple of 72138 and 2 is 72138. Convert -\frac{144468413}{72138} and \frac{3}{2} to fractions with denominator 72138.
\frac{-144468413-108207}{72138}+\frac{4000\times 4+3}{4}
Since -\frac{144468413}{72138} and \frac{108207}{72138} have the same denominator, subtract them by subtracting their numerators.
\frac{-144576620}{72138}+\frac{4000\times 4+3}{4}
Subtract 108207 from -144468413 to get -144576620.
-\frac{72288310}{36069}+\frac{4000\times 4+3}{4}
Reduce the fraction \frac{-144576620}{72138} to lowest terms by extracting and canceling out 2.
-\frac{72288310}{36069}+\frac{16000+3}{4}
Multiply 4000 and 4 to get 16000.
-\frac{72288310}{36069}+\frac{16003}{4}
Add 16000 and 3 to get 16003.
-\frac{289153240}{144276}+\frac{577212207}{144276}
Least common multiple of 36069 and 4 is 144276. Convert -\frac{72288310}{36069} and \frac{16003}{4} to fractions with denominator 144276.
\frac{-289153240+577212207}{144276}
Since -\frac{289153240}{144276} and \frac{577212207}{144276} have the same denominator, add them by adding their numerators.
\frac{288058967}{144276}
Add -289153240 and 577212207 to get 288058967.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}