Evaluate
\frac{23}{27648}\approx 0.000831887
Factor
\frac{23}{2 ^ {10} \cdot 3 ^ {3}} = 0.0008318865740740741
Share
Copied to clipboard
\frac{5}{256\times 6^{2}}+\frac{4}{4^{3}\times 6^{3}}
Calculate 4 to the power of 4 and get 256.
\frac{5}{256\times 36}+\frac{4}{4^{3}\times 6^{3}}
Calculate 6 to the power of 2 and get 36.
\frac{5}{9216}+\frac{4}{4^{3}\times 6^{3}}
Multiply 256 and 36 to get 9216.
\frac{5}{9216}+\frac{4}{64\times 6^{3}}
Calculate 4 to the power of 3 and get 64.
\frac{5}{9216}+\frac{4}{64\times 216}
Calculate 6 to the power of 3 and get 216.
\frac{5}{9216}+\frac{4}{13824}
Multiply 64 and 216 to get 13824.
\frac{5}{9216}+\frac{1}{3456}
Reduce the fraction \frac{4}{13824} to lowest terms by extracting and canceling out 4.
\frac{15}{27648}+\frac{8}{27648}
Least common multiple of 9216 and 3456 is 27648. Convert \frac{5}{9216} and \frac{1}{3456} to fractions with denominator 27648.
\frac{15+8}{27648}
Since \frac{15}{27648} and \frac{8}{27648} have the same denominator, add them by adding their numerators.
\frac{23}{27648}
Add 15 and 8 to get 23.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}