Evaluate
\frac{35}{36}\approx 0.972222222
Factor
\frac{5 \cdot 7}{2 ^ {2} \cdot 3 ^ {2}} = 0.9722222222222222
Share
Copied to clipboard
\frac{5}{4+\frac{2}{\frac{4}{4}+\frac{3}{4}}}
Convert 1 to fraction \frac{4}{4}.
\frac{5}{4+\frac{2}{\frac{4+3}{4}}}
Since \frac{4}{4} and \frac{3}{4} have the same denominator, add them by adding their numerators.
\frac{5}{4+\frac{2}{\frac{7}{4}}}
Add 4 and 3 to get 7.
\frac{5}{4+2\times \frac{4}{7}}
Divide 2 by \frac{7}{4} by multiplying 2 by the reciprocal of \frac{7}{4}.
\frac{5}{4+\frac{2\times 4}{7}}
Express 2\times \frac{4}{7} as a single fraction.
\frac{5}{4+\frac{8}{7}}
Multiply 2 and 4 to get 8.
\frac{5}{\frac{28}{7}+\frac{8}{7}}
Convert 4 to fraction \frac{28}{7}.
\frac{5}{\frac{28+8}{7}}
Since \frac{28}{7} and \frac{8}{7} have the same denominator, add them by adding their numerators.
\frac{5}{\frac{36}{7}}
Add 28 and 8 to get 36.
5\times \frac{7}{36}
Divide 5 by \frac{36}{7} by multiplying 5 by the reciprocal of \frac{36}{7}.
\frac{5\times 7}{36}
Express 5\times \frac{7}{36} as a single fraction.
\frac{35}{36}
Multiply 5 and 7 to get 35.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}