Solve for x
x=-\frac{1}{8}=-0.125
x=1
Graph
Share
Copied to clipboard
\left(2x-3\right)\times 5-\left(3x+2\right)\times 3=4\left(2x-3\right)\left(3x+2\right)
Variable x cannot be equal to any of the values -\frac{2}{3},\frac{3}{2} since division by zero is not defined. Multiply both sides of the equation by \left(2x-3\right)\left(3x+2\right), the least common multiple of 3x+2,2x-3.
10x-15-\left(3x+2\right)\times 3=4\left(2x-3\right)\left(3x+2\right)
Use the distributive property to multiply 2x-3 by 5.
10x-15-\left(9x+6\right)=4\left(2x-3\right)\left(3x+2\right)
Use the distributive property to multiply 3x+2 by 3.
10x-15-9x-6=4\left(2x-3\right)\left(3x+2\right)
To find the opposite of 9x+6, find the opposite of each term.
x-15-6=4\left(2x-3\right)\left(3x+2\right)
Combine 10x and -9x to get x.
x-21=4\left(2x-3\right)\left(3x+2\right)
Subtract 6 from -15 to get -21.
x-21=\left(8x-12\right)\left(3x+2\right)
Use the distributive property to multiply 4 by 2x-3.
x-21=24x^{2}-20x-24
Use the distributive property to multiply 8x-12 by 3x+2 and combine like terms.
x-21-24x^{2}=-20x-24
Subtract 24x^{2} from both sides.
x-21-24x^{2}+20x=-24
Add 20x to both sides.
21x-21-24x^{2}=-24
Combine x and 20x to get 21x.
21x-21-24x^{2}+24=0
Add 24 to both sides.
21x+3-24x^{2}=0
Add -21 and 24 to get 3.
-24x^{2}+21x+3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-21±\sqrt{21^{2}-4\left(-24\right)\times 3}}{2\left(-24\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -24 for a, 21 for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-21±\sqrt{441-4\left(-24\right)\times 3}}{2\left(-24\right)}
Square 21.
x=\frac{-21±\sqrt{441+96\times 3}}{2\left(-24\right)}
Multiply -4 times -24.
x=\frac{-21±\sqrt{441+288}}{2\left(-24\right)}
Multiply 96 times 3.
x=\frac{-21±\sqrt{729}}{2\left(-24\right)}
Add 441 to 288.
x=\frac{-21±27}{2\left(-24\right)}
Take the square root of 729.
x=\frac{-21±27}{-48}
Multiply 2 times -24.
x=\frac{6}{-48}
Now solve the equation x=\frac{-21±27}{-48} when ± is plus. Add -21 to 27.
x=-\frac{1}{8}
Reduce the fraction \frac{6}{-48} to lowest terms by extracting and canceling out 6.
x=-\frac{48}{-48}
Now solve the equation x=\frac{-21±27}{-48} when ± is minus. Subtract 27 from -21.
x=1
Divide -48 by -48.
x=-\frac{1}{8} x=1
The equation is now solved.
\left(2x-3\right)\times 5-\left(3x+2\right)\times 3=4\left(2x-3\right)\left(3x+2\right)
Variable x cannot be equal to any of the values -\frac{2}{3},\frac{3}{2} since division by zero is not defined. Multiply both sides of the equation by \left(2x-3\right)\left(3x+2\right), the least common multiple of 3x+2,2x-3.
10x-15-\left(3x+2\right)\times 3=4\left(2x-3\right)\left(3x+2\right)
Use the distributive property to multiply 2x-3 by 5.
10x-15-\left(9x+6\right)=4\left(2x-3\right)\left(3x+2\right)
Use the distributive property to multiply 3x+2 by 3.
10x-15-9x-6=4\left(2x-3\right)\left(3x+2\right)
To find the opposite of 9x+6, find the opposite of each term.
x-15-6=4\left(2x-3\right)\left(3x+2\right)
Combine 10x and -9x to get x.
x-21=4\left(2x-3\right)\left(3x+2\right)
Subtract 6 from -15 to get -21.
x-21=\left(8x-12\right)\left(3x+2\right)
Use the distributive property to multiply 4 by 2x-3.
x-21=24x^{2}-20x-24
Use the distributive property to multiply 8x-12 by 3x+2 and combine like terms.
x-21-24x^{2}=-20x-24
Subtract 24x^{2} from both sides.
x-21-24x^{2}+20x=-24
Add 20x to both sides.
21x-21-24x^{2}=-24
Combine x and 20x to get 21x.
21x-24x^{2}=-24+21
Add 21 to both sides.
21x-24x^{2}=-3
Add -24 and 21 to get -3.
-24x^{2}+21x=-3
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-24x^{2}+21x}{-24}=-\frac{3}{-24}
Divide both sides by -24.
x^{2}+\frac{21}{-24}x=-\frac{3}{-24}
Dividing by -24 undoes the multiplication by -24.
x^{2}-\frac{7}{8}x=-\frac{3}{-24}
Reduce the fraction \frac{21}{-24} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{7}{8}x=\frac{1}{8}
Reduce the fraction \frac{-3}{-24} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{7}{8}x+\left(-\frac{7}{16}\right)^{2}=\frac{1}{8}+\left(-\frac{7}{16}\right)^{2}
Divide -\frac{7}{8}, the coefficient of the x term, by 2 to get -\frac{7}{16}. Then add the square of -\frac{7}{16} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{7}{8}x+\frac{49}{256}=\frac{1}{8}+\frac{49}{256}
Square -\frac{7}{16} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{7}{8}x+\frac{49}{256}=\frac{81}{256}
Add \frac{1}{8} to \frac{49}{256} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{7}{16}\right)^{2}=\frac{81}{256}
Factor x^{2}-\frac{7}{8}x+\frac{49}{256}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{16}\right)^{2}}=\sqrt{\frac{81}{256}}
Take the square root of both sides of the equation.
x-\frac{7}{16}=\frac{9}{16} x-\frac{7}{16}=-\frac{9}{16}
Simplify.
x=1 x=-\frac{1}{8}
Add \frac{7}{16} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}