Solve for v
v=\frac{35}{44}\approx 0.795454545
Share
Copied to clipboard
\frac{5}{3}v-\frac{5}{3}+2v=\frac{5}{4}
Add 2v to both sides.
\frac{11}{3}v-\frac{5}{3}=\frac{5}{4}
Combine \frac{5}{3}v and 2v to get \frac{11}{3}v.
\frac{11}{3}v=\frac{5}{4}+\frac{5}{3}
Add \frac{5}{3} to both sides.
\frac{11}{3}v=\frac{15}{12}+\frac{20}{12}
Least common multiple of 4 and 3 is 12. Convert \frac{5}{4} and \frac{5}{3} to fractions with denominator 12.
\frac{11}{3}v=\frac{15+20}{12}
Since \frac{15}{12} and \frac{20}{12} have the same denominator, add them by adding their numerators.
\frac{11}{3}v=\frac{35}{12}
Add 15 and 20 to get 35.
v=\frac{35}{12}\times \frac{3}{11}
Multiply both sides by \frac{3}{11}, the reciprocal of \frac{11}{3}.
v=\frac{35\times 3}{12\times 11}
Multiply \frac{35}{12} times \frac{3}{11} by multiplying numerator times numerator and denominator times denominator.
v=\frac{105}{132}
Do the multiplications in the fraction \frac{35\times 3}{12\times 11}.
v=\frac{35}{44}
Reduce the fraction \frac{105}{132} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}