Evaluate
\frac{9801}{1990}\approx 4.925125628
Factor
\frac{3 ^ {4} \cdot 11 ^ {2}}{2 \cdot 5 \cdot 199} = 4\frac{1841}{1990} = 4.925125628140703
Share
Copied to clipboard
\frac{1}{40}\times \frac{4}{199}+\frac{5}{200}\times \frac{195}{199}+\frac{195\times 5}{200}+\frac{5}{199}
Reduce the fraction \frac{5}{200} to lowest terms by extracting and canceling out 5.
\frac{1\times 4}{40\times 199}+\frac{5}{200}\times \frac{195}{199}+\frac{195\times 5}{200}+\frac{5}{199}
Multiply \frac{1}{40} times \frac{4}{199} by multiplying numerator times numerator and denominator times denominator.
\frac{4}{7960}+\frac{5}{200}\times \frac{195}{199}+\frac{195\times 5}{200}+\frac{5}{199}
Do the multiplications in the fraction \frac{1\times 4}{40\times 199}.
\frac{1}{1990}+\frac{5}{200}\times \frac{195}{199}+\frac{195\times 5}{200}+\frac{5}{199}
Reduce the fraction \frac{4}{7960} to lowest terms by extracting and canceling out 4.
\frac{1}{1990}+\frac{1}{40}\times \frac{195}{199}+\frac{195\times 5}{200}+\frac{5}{199}
Reduce the fraction \frac{5}{200} to lowest terms by extracting and canceling out 5.
\frac{1}{1990}+\frac{1\times 195}{40\times 199}+\frac{195\times 5}{200}+\frac{5}{199}
Multiply \frac{1}{40} times \frac{195}{199} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{1990}+\frac{195}{7960}+\frac{195\times 5}{200}+\frac{5}{199}
Do the multiplications in the fraction \frac{1\times 195}{40\times 199}.
\frac{1}{1990}+\frac{39}{1592}+\frac{195\times 5}{200}+\frac{5}{199}
Reduce the fraction \frac{195}{7960} to lowest terms by extracting and canceling out 5.
\frac{4}{7960}+\frac{195}{7960}+\frac{195\times 5}{200}+\frac{5}{199}
Least common multiple of 1990 and 1592 is 7960. Convert \frac{1}{1990} and \frac{39}{1592} to fractions with denominator 7960.
\frac{4+195}{7960}+\frac{195\times 5}{200}+\frac{5}{199}
Since \frac{4}{7960} and \frac{195}{7960} have the same denominator, add them by adding their numerators.
\frac{199}{7960}+\frac{195\times 5}{200}+\frac{5}{199}
Add 4 and 195 to get 199.
\frac{1}{40}+\frac{195\times 5}{200}+\frac{5}{199}
Reduce the fraction \frac{199}{7960} to lowest terms by extracting and canceling out 199.
\frac{1}{40}+\frac{975}{200}+\frac{5}{199}
Multiply 195 and 5 to get 975.
\frac{1}{40}+\frac{39}{8}+\frac{5}{199}
Reduce the fraction \frac{975}{200} to lowest terms by extracting and canceling out 25.
\frac{1}{40}+\frac{195}{40}+\frac{5}{199}
Least common multiple of 40 and 8 is 40. Convert \frac{1}{40} and \frac{39}{8} to fractions with denominator 40.
\frac{1+195}{40}+\frac{5}{199}
Since \frac{1}{40} and \frac{195}{40} have the same denominator, add them by adding their numerators.
\frac{196}{40}+\frac{5}{199}
Add 1 and 195 to get 196.
\frac{49}{10}+\frac{5}{199}
Reduce the fraction \frac{196}{40} to lowest terms by extracting and canceling out 4.
\frac{9751}{1990}+\frac{50}{1990}
Least common multiple of 10 and 199 is 1990. Convert \frac{49}{10} and \frac{5}{199} to fractions with denominator 1990.
\frac{9751+50}{1990}
Since \frac{9751}{1990} and \frac{50}{1990} have the same denominator, add them by adding their numerators.
\frac{9801}{1990}
Add 9751 and 50 to get 9801.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}