Solve for p
p = -\frac{11}{5} = -2\frac{1}{5} = -2.2
Share
Copied to clipboard
\left(p-2\right)\times 5-\left(2p+3\right)\times 3=\left(p-2\right)\times 4
Variable p cannot be equal to any of the values -\frac{3}{2},2 since division by zero is not defined. Multiply both sides of the equation by \left(p-2\right)\left(2p+3\right), the least common multiple of 2p+3,p-2.
5p-10-\left(2p+3\right)\times 3=\left(p-2\right)\times 4
Use the distributive property to multiply p-2 by 5.
5p-10-\left(6p+9\right)=\left(p-2\right)\times 4
Use the distributive property to multiply 2p+3 by 3.
5p-10-6p-9=\left(p-2\right)\times 4
To find the opposite of 6p+9, find the opposite of each term.
-p-10-9=\left(p-2\right)\times 4
Combine 5p and -6p to get -p.
-p-19=\left(p-2\right)\times 4
Subtract 9 from -10 to get -19.
-p-19=4p-8
Use the distributive property to multiply p-2 by 4.
-p-19-4p=-8
Subtract 4p from both sides.
-5p-19=-8
Combine -p and -4p to get -5p.
-5p=-8+19
Add 19 to both sides.
-5p=11
Add -8 and 19 to get 11.
p=\frac{11}{-5}
Divide both sides by -5.
p=-\frac{11}{5}
Fraction \frac{11}{-5} can be rewritten as -\frac{11}{5} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}