Solve for x
x\geq \frac{9}{49}
Graph
Quiz
Algebra
5 problems similar to:
\frac { 5 } { 2 } x + 1 \geq \frac { 3 } { 2 } - \frac { 2 } { 9 } x
Share
Copied to clipboard
\frac{5}{2}x+1+\frac{2}{9}x\geq \frac{3}{2}
Add \frac{2}{9}x to both sides.
\frac{49}{18}x+1\geq \frac{3}{2}
Combine \frac{5}{2}x and \frac{2}{9}x to get \frac{49}{18}x.
\frac{49}{18}x\geq \frac{3}{2}-1
Subtract 1 from both sides.
\frac{49}{18}x\geq \frac{3}{2}-\frac{2}{2}
Convert 1 to fraction \frac{2}{2}.
\frac{49}{18}x\geq \frac{3-2}{2}
Since \frac{3}{2} and \frac{2}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{49}{18}x\geq \frac{1}{2}
Subtract 2 from 3 to get 1.
x\geq \frac{1}{2}\times \frac{18}{49}
Multiply both sides by \frac{18}{49}, the reciprocal of \frac{49}{18}. Since \frac{49}{18} is positive, the inequality direction remains the same.
x\geq \frac{1\times 18}{2\times 49}
Multiply \frac{1}{2} times \frac{18}{49} by multiplying numerator times numerator and denominator times denominator.
x\geq \frac{18}{98}
Do the multiplications in the fraction \frac{1\times 18}{2\times 49}.
x\geq \frac{9}{49}
Reduce the fraction \frac{18}{98} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}