Evaluate
\frac{367}{144}\approx 2.548611111
Factor
\frac{367}{2 ^ {4} \cdot 3 ^ {2}} = 2\frac{79}{144} = 2.548611111111111
Share
Copied to clipboard
\frac{5\times 3}{2\times 4}\times \frac{1}{2}+\frac{3}{2}+\frac{\frac{1}{2}}{\frac{3}{2}}\left(\frac{2}{3}-\frac{1}{2}\times \frac{2}{3}\right)
Multiply \frac{5}{2} times \frac{3}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{15}{8}\times \frac{1}{2}+\frac{3}{2}+\frac{\frac{1}{2}}{\frac{3}{2}}\left(\frac{2}{3}-\frac{1}{2}\times \frac{2}{3}\right)
Do the multiplications in the fraction \frac{5\times 3}{2\times 4}.
\frac{15\times 1}{8\times 2}+\frac{3}{2}+\frac{\frac{1}{2}}{\frac{3}{2}}\left(\frac{2}{3}-\frac{1}{2}\times \frac{2}{3}\right)
Multiply \frac{15}{8} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{15}{16}+\frac{3}{2}+\frac{\frac{1}{2}}{\frac{3}{2}}\left(\frac{2}{3}-\frac{1}{2}\times \frac{2}{3}\right)
Do the multiplications in the fraction \frac{15\times 1}{8\times 2}.
\frac{15}{16}+\frac{24}{16}+\frac{\frac{1}{2}}{\frac{3}{2}}\left(\frac{2}{3}-\frac{1}{2}\times \frac{2}{3}\right)
Least common multiple of 16 and 2 is 16. Convert \frac{15}{16} and \frac{3}{2} to fractions with denominator 16.
\frac{15+24}{16}+\frac{\frac{1}{2}}{\frac{3}{2}}\left(\frac{2}{3}-\frac{1}{2}\times \frac{2}{3}\right)
Since \frac{15}{16} and \frac{24}{16} have the same denominator, add them by adding their numerators.
\frac{39}{16}+\frac{\frac{1}{2}}{\frac{3}{2}}\left(\frac{2}{3}-\frac{1}{2}\times \frac{2}{3}\right)
Add 15 and 24 to get 39.
\frac{39}{16}+\frac{1}{2}\times \frac{2}{3}\left(\frac{2}{3}-\frac{1}{2}\times \frac{2}{3}\right)
Divide \frac{1}{2} by \frac{3}{2} by multiplying \frac{1}{2} by the reciprocal of \frac{3}{2}.
\frac{39}{16}+\frac{1\times 2}{2\times 3}\left(\frac{2}{3}-\frac{1}{2}\times \frac{2}{3}\right)
Multiply \frac{1}{2} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{39}{16}+\frac{1}{3}\left(\frac{2}{3}-\frac{1}{2}\times \frac{2}{3}\right)
Cancel out 2 in both numerator and denominator.
\frac{39}{16}+\frac{1}{3}\left(\frac{2}{3}-\frac{1\times 2}{2\times 3}\right)
Multiply \frac{1}{2} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{39}{16}+\frac{1}{3}\left(\frac{2}{3}-\frac{1}{3}\right)
Cancel out 2 in both numerator and denominator.
\frac{39}{16}+\frac{1}{3}\times \frac{2-1}{3}
Since \frac{2}{3} and \frac{1}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{39}{16}+\frac{1}{3}\times \frac{1}{3}
Subtract 1 from 2 to get 1.
\frac{39}{16}+\frac{1\times 1}{3\times 3}
Multiply \frac{1}{3} times \frac{1}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{39}{16}+\frac{1}{9}
Do the multiplications in the fraction \frac{1\times 1}{3\times 3}.
\frac{351}{144}+\frac{16}{144}
Least common multiple of 16 and 9 is 144. Convert \frac{39}{16} and \frac{1}{9} to fractions with denominator 144.
\frac{351+16}{144}
Since \frac{351}{144} and \frac{16}{144} have the same denominator, add them by adding their numerators.
\frac{367}{144}
Add 351 and 16 to get 367.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}