Skip to main content
Solve for b
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{3}=\frac{28^{2}+14^{2}-b^{2}}{200\times 14\times 28}
Reduce the fraction \frac{5}{15} to lowest terms by extracting and canceling out 5.
\frac{1}{3}=\frac{784+14^{2}-b^{2}}{200\times 14\times 28}
Calculate 28 to the power of 2 and get 784.
\frac{1}{3}=\frac{784+196-b^{2}}{200\times 14\times 28}
Calculate 14 to the power of 2 and get 196.
\frac{1}{3}=\frac{980-b^{2}}{200\times 14\times 28}
Add 784 and 196 to get 980.
\frac{1}{3}=\frac{980-b^{2}}{2800\times 28}
Multiply 200 and 14 to get 2800.
\frac{1}{3}=\frac{980-b^{2}}{78400}
Multiply 2800 and 28 to get 78400.
\frac{1}{3}=\frac{1}{80}-\frac{1}{78400}b^{2}
Divide each term of 980-b^{2} by 78400 to get \frac{1}{80}-\frac{1}{78400}b^{2}.
\frac{1}{80}-\frac{1}{78400}b^{2}=\frac{1}{3}
Swap sides so that all variable terms are on the left hand side.
-\frac{1}{78400}b^{2}=\frac{1}{3}-\frac{1}{80}
Subtract \frac{1}{80} from both sides.
-\frac{1}{78400}b^{2}=\frac{77}{240}
Subtract \frac{1}{80} from \frac{1}{3} to get \frac{77}{240}.
b^{2}=\frac{77}{240}\left(-78400\right)
Multiply both sides by -78400, the reciprocal of -\frac{1}{78400}.
b^{2}=-\frac{75460}{3}
Multiply \frac{77}{240} and -78400 to get -\frac{75460}{3}.
b=\frac{14\sqrt{1155}i}{3} b=-\frac{14\sqrt{1155}i}{3}
The equation is now solved.
\frac{1}{3}=\frac{28^{2}+14^{2}-b^{2}}{200\times 14\times 28}
Reduce the fraction \frac{5}{15} to lowest terms by extracting and canceling out 5.
\frac{1}{3}=\frac{784+14^{2}-b^{2}}{200\times 14\times 28}
Calculate 28 to the power of 2 and get 784.
\frac{1}{3}=\frac{784+196-b^{2}}{200\times 14\times 28}
Calculate 14 to the power of 2 and get 196.
\frac{1}{3}=\frac{980-b^{2}}{200\times 14\times 28}
Add 784 and 196 to get 980.
\frac{1}{3}=\frac{980-b^{2}}{2800\times 28}
Multiply 200 and 14 to get 2800.
\frac{1}{3}=\frac{980-b^{2}}{78400}
Multiply 2800 and 28 to get 78400.
\frac{1}{3}=\frac{1}{80}-\frac{1}{78400}b^{2}
Divide each term of 980-b^{2} by 78400 to get \frac{1}{80}-\frac{1}{78400}b^{2}.
\frac{1}{80}-\frac{1}{78400}b^{2}=\frac{1}{3}
Swap sides so that all variable terms are on the left hand side.
\frac{1}{80}-\frac{1}{78400}b^{2}-\frac{1}{3}=0
Subtract \frac{1}{3} from both sides.
-\frac{77}{240}-\frac{1}{78400}b^{2}=0
Subtract \frac{1}{3} from \frac{1}{80} to get -\frac{77}{240}.
-\frac{1}{78400}b^{2}-\frac{77}{240}=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
b=\frac{0±\sqrt{0^{2}-4\left(-\frac{1}{78400}\right)\left(-\frac{77}{240}\right)}}{2\left(-\frac{1}{78400}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{1}{78400} for a, 0 for b, and -\frac{77}{240} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{0±\sqrt{-4\left(-\frac{1}{78400}\right)\left(-\frac{77}{240}\right)}}{2\left(-\frac{1}{78400}\right)}
Square 0.
b=\frac{0±\sqrt{\frac{1}{19600}\left(-\frac{77}{240}\right)}}{2\left(-\frac{1}{78400}\right)}
Multiply -4 times -\frac{1}{78400}.
b=\frac{0±\sqrt{-\frac{11}{672000}}}{2\left(-\frac{1}{78400}\right)}
Multiply \frac{1}{19600} times -\frac{77}{240} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
b=\frac{0±\frac{\sqrt{1155}i}{8400}}{2\left(-\frac{1}{78400}\right)}
Take the square root of -\frac{11}{672000}.
b=\frac{0±\frac{\sqrt{1155}i}{8400}}{-\frac{1}{39200}}
Multiply 2 times -\frac{1}{78400}.
b=-\frac{14\sqrt{1155}i}{3}
Now solve the equation b=\frac{0±\frac{\sqrt{1155}i}{8400}}{-\frac{1}{39200}} when ± is plus.
b=\frac{14\sqrt{1155}i}{3}
Now solve the equation b=\frac{0±\frac{\sqrt{1155}i}{8400}}{-\frac{1}{39200}} when ± is minus.
b=-\frac{14\sqrt{1155}i}{3} b=\frac{14\sqrt{1155}i}{3}
The equation is now solved.