Evaluate
\frac{23}{65}\approx 0.353846154
Factor
\frac{23}{5 \cdot 13} = 0.35384615384615387
Share
Copied to clipboard
\frac{5\times 3}{13\times 5}-\left(-\frac{4}{5}\times \frac{2}{13}\right)
Multiply \frac{5}{13} times \frac{3}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{13}-\left(-\frac{4}{5}\times \frac{2}{13}\right)
Cancel out 5 in both numerator and denominator.
\frac{3}{13}-\frac{-4\times 2}{5\times 13}
Multiply -\frac{4}{5} times \frac{2}{13} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{13}-\frac{-8}{65}
Do the multiplications in the fraction \frac{-4\times 2}{5\times 13}.
\frac{3}{13}-\left(-\frac{8}{65}\right)
Fraction \frac{-8}{65} can be rewritten as -\frac{8}{65} by extracting the negative sign.
\frac{3}{13}+\frac{8}{65}
The opposite of -\frac{8}{65} is \frac{8}{65}.
\frac{15}{65}+\frac{8}{65}
Least common multiple of 13 and 65 is 65. Convert \frac{3}{13} and \frac{8}{65} to fractions with denominator 65.
\frac{15+8}{65}
Since \frac{15}{65} and \frac{8}{65} have the same denominator, add them by adding their numerators.
\frac{23}{65}
Add 15 and 8 to get 23.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}