Solve for x (complex solution)
x=\frac{3+\sqrt{6}i}{5}\approx 0.6+0.489897949i
x=\frac{-\sqrt{6}i+3}{5}\approx 0.6-0.489897949i
Graph
Share
Copied to clipboard
\frac{5}{12}x^{2}-\frac{1}{2}x+\frac{1}{4}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\left(-\frac{1}{2}\right)^{2}-4\times \frac{5}{12}\times \frac{1}{4}}}{2\times \frac{5}{12}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{5}{12} for a, -\frac{1}{2} for b, and \frac{1}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\frac{1}{4}-4\times \frac{5}{12}\times \frac{1}{4}}}{2\times \frac{5}{12}}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\frac{1}{4}-\frac{5}{3}\times \frac{1}{4}}}{2\times \frac{5}{12}}
Multiply -4 times \frac{5}{12}.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\frac{1}{4}-\frac{5}{12}}}{2\times \frac{5}{12}}
Multiply -\frac{5}{3} times \frac{1}{4} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{-\frac{1}{6}}}{2\times \frac{5}{12}}
Add \frac{1}{4} to -\frac{5}{12} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{1}{2}\right)±\frac{\sqrt{6}i}{6}}{2\times \frac{5}{12}}
Take the square root of -\frac{1}{6}.
x=\frac{\frac{1}{2}±\frac{\sqrt{6}i}{6}}{2\times \frac{5}{12}}
The opposite of -\frac{1}{2} is \frac{1}{2}.
x=\frac{\frac{1}{2}±\frac{\sqrt{6}i}{6}}{\frac{5}{6}}
Multiply 2 times \frac{5}{12}.
x=\frac{\frac{\sqrt{6}i}{6}+\frac{1}{2}}{\frac{5}{6}}
Now solve the equation x=\frac{\frac{1}{2}±\frac{\sqrt{6}i}{6}}{\frac{5}{6}} when ± is plus. Add \frac{1}{2} to \frac{i\sqrt{6}}{6}.
x=\frac{3+\sqrt{6}i}{5}
Divide \frac{1}{2}+\frac{i\sqrt{6}}{6} by \frac{5}{6} by multiplying \frac{1}{2}+\frac{i\sqrt{6}}{6} by the reciprocal of \frac{5}{6}.
x=\frac{-\frac{\sqrt{6}i}{6}+\frac{1}{2}}{\frac{5}{6}}
Now solve the equation x=\frac{\frac{1}{2}±\frac{\sqrt{6}i}{6}}{\frac{5}{6}} when ± is minus. Subtract \frac{i\sqrt{6}}{6} from \frac{1}{2}.
x=\frac{-\sqrt{6}i+3}{5}
Divide \frac{1}{2}-\frac{i\sqrt{6}}{6} by \frac{5}{6} by multiplying \frac{1}{2}-\frac{i\sqrt{6}}{6} by the reciprocal of \frac{5}{6}.
x=\frac{3+\sqrt{6}i}{5} x=\frac{-\sqrt{6}i+3}{5}
The equation is now solved.
\frac{5}{12}x^{2}-\frac{1}{2}x+\frac{1}{4}=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{5}{12}x^{2}-\frac{1}{2}x+\frac{1}{4}-\frac{1}{4}=-\frac{1}{4}
Subtract \frac{1}{4} from both sides of the equation.
\frac{5}{12}x^{2}-\frac{1}{2}x=-\frac{1}{4}
Subtracting \frac{1}{4} from itself leaves 0.
\frac{\frac{5}{12}x^{2}-\frac{1}{2}x}{\frac{5}{12}}=-\frac{\frac{1}{4}}{\frac{5}{12}}
Divide both sides of the equation by \frac{5}{12}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{\frac{1}{2}}{\frac{5}{12}}\right)x=-\frac{\frac{1}{4}}{\frac{5}{12}}
Dividing by \frac{5}{12} undoes the multiplication by \frac{5}{12}.
x^{2}-\frac{6}{5}x=-\frac{\frac{1}{4}}{\frac{5}{12}}
Divide -\frac{1}{2} by \frac{5}{12} by multiplying -\frac{1}{2} by the reciprocal of \frac{5}{12}.
x^{2}-\frac{6}{5}x=-\frac{3}{5}
Divide -\frac{1}{4} by \frac{5}{12} by multiplying -\frac{1}{4} by the reciprocal of \frac{5}{12}.
x^{2}-\frac{6}{5}x+\left(-\frac{3}{5}\right)^{2}=-\frac{3}{5}+\left(-\frac{3}{5}\right)^{2}
Divide -\frac{6}{5}, the coefficient of the x term, by 2 to get -\frac{3}{5}. Then add the square of -\frac{3}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{6}{5}x+\frac{9}{25}=-\frac{3}{5}+\frac{9}{25}
Square -\frac{3}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{6}{5}x+\frac{9}{25}=-\frac{6}{25}
Add -\frac{3}{5} to \frac{9}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{3}{5}\right)^{2}=-\frac{6}{25}
Factor x^{2}-\frac{6}{5}x+\frac{9}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{5}\right)^{2}}=\sqrt{-\frac{6}{25}}
Take the square root of both sides of the equation.
x-\frac{3}{5}=\frac{\sqrt{6}i}{5} x-\frac{3}{5}=-\frac{\sqrt{6}i}{5}
Simplify.
x=\frac{3+\sqrt{6}i}{5} x=\frac{-\sqrt{6}i+3}{5}
Add \frac{3}{5} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}